PALOS VERDES SHELF SEAFOOD CONSUMPTION STUDY

Technical Report

2014

ACKNOWLEDGEMENTS

\author{
U.S. Environmental Protection Agency (EPA)
 Judy Huang, Remedial Project Manager
 Phillip Ramsey, Remedial Project Manager
 Dr. Sophia Serda, Toxicologist
 Technical Advisory Committee
 Robert Brodberg, Cal/EPA, Office of Environmental Health Hazard Assessment (OEHHA)
 Patty Velez, California Department of Fish and Wildlife
 Alyce Ujihara, California Department of Public Health, Environmental Health Investigations Branch Alfonso Montiel, Cabrillo Marine Aquarium
 Guangyu Wang, Santa Monica Bay Restoration Commission
 James Alamillo, Heal the Bay
 Frankie Orrala, Heal the Bay
 ```
S. Groner Associates, Inc. (SGA)
 Stephen Groner, President
 Tiffany Jonick, Project Manager
 Namju Cho, Project Manager
 Philip Kao, Project Coordinator
 Nicole Sintov, Research Specialist
 Citadel Cabasag, Surveyor
 Tina Lertharakul, Surveyor
 Thuy Nghiem, Surveyor
 Lucia Phan, Surveyor
 Alben Phung, Surveyor
 Katherine Rojas, Surveyor
 Jasmine Yeh, Surveyor
 Elizabeth Anderson, Writer
 Adam Quinn, Writer
 Natalie Chow, Editor
 Dr. Michael Franklin, Consulting Ichthyologist

```
}
Action Research
Wesley Schultz, Consulting Scientist
Lori Large, Project Director
Dani Ballard, Project Manager

This report is the result of the contributions of many dedicated people. The Technical Advisory Committee guided this Study from inception to completion, and their countless contributions are greatly appreciated.

\section*{TABLE OF CONTENTS}
ACKNOWLEDGEMENTS ..... 2
TABLE OF CONTENTS ..... 3
LIST OF APPENDICES ..... 5
LIST OF TABLES ..... 6
LIST OF FIGURES ..... 8
ABBREVIATIONS ..... 10
EXECUTIVE SUMMARY ..... 12
SECTION 1 - INTRODUCTION ..... 16
1.1. History of Palos Verdes Shelf Superfund Site ..... 16
1.2. Contamination \& Associated Health Risks ..... 17
1.3. Application of Findings From Previous Studies ..... 18
SECTION 2 - GOAL AND OBJECTIVES ..... 20
2.1. Goal ..... 20
2.2. Objectives ..... 20
SECTION 3 - STUDY DESIGN AND ADMINISTRATION ..... 22
3.1. Study Oversight and Staff ..... 22
3.2. Study Overview ..... 22
3.3. Survey Method ..... 23
3.4. Response Rate Goal ..... 23
3.5. Site Selection ..... 23
3.6. Sampling Period ..... 25
3.7. Survey Instruments ..... 26
3.8. Field Survey Methods ..... 29
3.9. Administering the Survey ..... 30
3.10. Study Limitations ..... 31
SECTION 4 - DATA MANAGEMENT, QUALITY ASSURANCE \& CONTROL, AND DATA ANALYSIS
4.1. Data Management ..... 34
4.2. Statistical Power and Margin of Error ..... 34
4.3. Quality Assurance and Quality Control ..... 35
4.4. Calculation of Fish Consumption Rate ..... 36
4.5. Interpreting Fish Consumption Volume Data ..... 37
4.6. Statistical Methods ..... 37
SECTION 5 - RESULTS ..... 39
5.1. Summary of Survey Results ..... 39
5.2. Variations by Fishing Mode and Season ..... 40
5.3. Survey Decliners ..... 41
5.4. Angler Characteristics ..... 42
5.5. Fishing Behaviors and Characteristics ..... 46
5.6. Fish Consumption Patterns ..... 56
5.7. DNC Fish Consumption Patterns ..... 63
5.8. Awareness of Advisory \& Behavior ..... 68
5.9. Comparisons Over Time ..... 74
SECTION 6 - RECOMMENDATIONS FOR FUTURE OUTREACH ..... 80
6.1. Angler Language Needs ..... 80
6.2. Angler Age ..... 80
6.3. Black Anglers ..... 81
6.4. Asian Angler Outreach ..... 81
6.5. Barred Sand Bass ..... 81
6.6. Health Advisory Awareness ..... 82
REFERENCES ..... 83

\section*{LIST OF APPENDICES}
\begin{tabular}{ll} 
Appendix A & Regional Map of Palos Verdes Shelf Area, List and Map of Fishing Locations \\
Appendix B & Questionnaires in English, Spanish, Vietnamese, Chinese and Tagalog \\
Appendix C & Shift Summary Sheet/Refusal Log \\
Appendix D & Beaufort Sea State Scale \\
Appendix E & Census Sheet \\
Appendix F & Regional Map and MSRP Fish ID Card \\
Appendix G & Fish Model \\
Appendix H & Fish Identification Chart \\
Appendix I & Language Identification Card \\
Appendix J & \begin{tabular}{l} 
Survey Administration Tools: Messenger Bag, Gloves, \& Tape Measure \\
Appendix K
\end{tabular} \begin{tabular}{l} 
Tip Card in English, Spanish, Vietnamese, Chinese and Tagalog \\
Appendix L
\end{tabular} \begin{tabular}{l} 
Key Variables by Question Number: Fish Consumption Patterns \& Awareness \\
of Advisory
\end{tabular} \\
Appendix M & \begin{tabular}{l} 
Data Tables for Section 5 Results \\
Appendix N
\end{tabular} \\
Appendix O of Surveyors in the Field
\end{tabular}

\section*{LIST OF TABLES}

Table 1 Seasonal collection days (per each of the four modes)
Table 2 Angler rationale for declining to be interviewed by fishing mode

Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21

Table 22

Table 23
Table 24

Comparison across Seafood Consumption Studies 1994 vs. 2014
Comparison of Palos Verdes Shelf vs. San Francisco consumption report

\section*{LIST OF FIGURES}

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13

Figure 14
Figure 15

Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Palos Verdes Shelf superfund site sampling locations
Histogram of angler age (in three year intervals)
Comparison of angler race in angler population vs. L.A. county population Angler ethnicity distribution (during survey administration) by fishing mode Fishing mode usage (during survey administration) by fishing mode

Angler ethnicity by summer and non-summer months
Percent of anglers with at least a given years' experience fishing in the Study Area

Angler catch by pier or jetty
Angler catch by private boat
Angler catch by charter boat
Number of anglers with specific fish species by season
Percentage of anglers who consume fish who also report using a given preparation method

Histogram - Overall consumption rate among 270 anglers who reported consuming fish from the Study Area in the past four weeks

Percentage of anglers who reported being aware of the health advisory
Percentage of anglers who reported being aware of the health advisory by ethnicity

Percent of aware angler population able to identify each outreach message Method of learning about the health advisory

Change in behaviors as a result of advisory awareness Importance of the advisory/warning as reported by anglers

Percentage of anglers believing advisory warnings are important by ethnicity

Figure 21 Angler ethnicities across 1994 and 2014 Study

Figure 22
Figure 23

Ethnic participation rate across 1994 and 2014 Study
Commonly consumed fish species 1994 and 2014 Study

\section*{ABBREVIATIONS}
\begin{tabular}{ll} 
AWQC & Ambient Water Quality Criteria \\
CTE & Central Tendency Exposure \\
DDT & Dichloro-Diphenyl-Trichloroethane \\
DNC & Do Not Consume \\
EPA & Environmental Protection Agency \\
FCEC & Fish Contamination Education Collaborative \\
IC & Institutional Controls \\
MSRP & Montrose Settlements Restoration Program \\
NOAA & National Oceanic and Atmospheric Administration \\
OMB & Office of Management and Budget \\
PCB & Polychlorinated Biphenyls \\
QA & Quality Assurance \\
QC & Quality Control \\
RME & Reasonable Maximum Exposure \\
ROD & Record of Decision \\
SGA & S. Groner Associates, Inc. \\
SMBRP & Santa Monica Bay Seafood Consumption Study \\
SPSS & Statistical Package for the Social Sciences \\
TAC & Technical Advisory Committee \\
U.C.L. & Upper Confidence Limit \\
SA &
\end{tabular}

\section*{EXECUTIVE SUMMARY}

\section*{EXECUTIVE SUMMARY}

The Palos Verdes Shelf superfund site is a large area of contaminated sediment located approximately two miles off the coast of the Palos Verdes Peninsula. Since the 1970s, studies have shown that fish caught in the region (from the Santa Monica Pier to Seal Beach Pier) have elevated levels of DDT and PCBs. Palos Verdes Shelf is a main source of the DDT and PCBs contamination in the fish. The presence of chemically contaminated fish has generated public concern regarding the safety of consuming seafood from the region. To properly determine the health risks from the consumption of contaminated seafood, data on the consumption rates of anglers fishing in the region is required.

This seafood consumption study replicates to the extent possible the 1994 Santa Monica Bay Seafood Consumption Study (1994 Study) to provide data to conduct trend analysis and to achieve the following objectives:
- To conduct a statistically valid survey of recreational anglers that fish in the greater PV Shelf area to determine the fish species that are being caught and consumed at the highest rates;
- To gather quantitative data that can be used to characterize exposures of the general fishing population of the PV Shelf area to DDTs and PCBs from consumption of fish and shellfish caught in the PV Shelf area;
- To identify demographic and ethnic subgroups within the general fishing population of the PV Shelf area that may be consuming large quantities of contaminants through selection, quantity, and/or cooking method of fish species; and
- To gather sufficient information to determine whether the existing human health risk assessment needs to be revised before its use in a final Record of Decision.

Anglers were interviewed between February 2012 to January 2013 at piers, jetties, private boats, charter boats, and beach and intertidal zones. Interview days occurred on both weekdays and weekends. Answers to the questionnaire were numerically coded, entered into a computer database, and analyzed. A total of 693 in-person survey responses were collected over 128 interview days at 61 different fishing sites in the region. The volume of responses allows for a \(\pm 4 \%\) margin of error for findings at the population level. The total number of anglers counted was \(64 \%\) lower than in 1994.

The study finds that:
- Fish Species that are being caught and consumed:
- At least 35 species of fish taken from the area by recreational anglers.

O The most abundant species caught by anglers and intended for consumptions are: mackerel (27\% of anglers), Pacific sardine (21\%), perch (19\%), topsmelt (19\%), California scorpionfish (14\%) and bass (12\%).
- Fish Consumption rate for exposure rate characterization:
- Thirty-nine percent of anglers interviewed reported consuming fish from the region within the four weeks prior to being surveyed.
O The average daily consumption rate per angler consumer is 18.55 grams per day.
- The \(90^{\text {th }}\) percentile angler-consumers consume 42.86 grams per individual per day or more than twice as much fish from PV Shelf as the average angler consumer.
- Demographic and ethnic subgroups:
- Many ethnic groups were identified: Hispanic, White, Asian (which included Filipino, Japanese, Korean, Chinese, and Vietnamese), as well as anglers of mixed or other ethnic origins.
- The ethnic breakdown of the anglers is as follows: Hispanic (37\%) with White (24\%), Asian ( \(24 \%\) ), Black ( \(6 \%\) ), and \(9 \%\) of mixed or other ethnic background.
- The overwhelming majority of anglers were men (94\%).
- The age of anglers ranges from 14 to 87 years old. Mean angler age of is 44 years old.
- Hispanics are the most abundant ethnic group on piers and jetties, whereas Whites are the most abundant group on charter boats and private boats.
- Black anglers report among the highest rates of consumption and consumption of DNC fish, as well as the lowest overall awareness of health advisory warnings and regard for these warnings.
- Effectiveness of the Institutional Controls:

O The decrease in average daily seafood consumption rate suggests that EPA's public outreach efforts have been successful in changing angler consumer behaviors and reduced human health exposure to contaminated fish.
○ \(61 \%\) of anglers (425 of 693) reported awareness of advisory warnings disseminated in the past decade, and of those who reported awareness, 42\% (175 of 693) reported adopting a more healthy behavior.
- Trend Analysis:
- Shift in fish species caught: the most common species intended for consumption were mackerel ( \(27 \%\) of anglers), Pacific sardine ( \(21 \%\) ), perch ( \(19 \%\) ), topsmelt ( \(19 \%\) ), California scorpionfish (14\%) and bass (12\%). In 1994, the most commonly consumed fish were Pacific bonito ( \(77.5 \%\) ), barracuda ( \(74.2 \%\) ) and halibut ( \(69.6 \%\) ).
- There is a \(50 \%\) reduction in fish consumption rate compare to the 1994 consumption rate.
- The preparation methods remained consistent from 1994 to present: the majority of consumers ( \(63 \%\) in the current study and \(65 \%\) in 1994) reported eating the fish as a steak or fillet without the skin.
- Since the 1994 study, the percent of anglers who are White has declined from \(43 \%\) to \(24 \%\) while the percentage of Hispanic and Asian have increased, from \(25 \%\) to \(37 \%\) and \(18 \%\) to \(24 \%\), respectively. Despite the population level changes, trends across fishing modes have remained consistent since the 1994 study.

Several recommendations for future outreach are made as a result of this study: Language difficulties were the main reasons given for declined surveys, and therefore, continuing to recruit outreach workers to match the diverse ethnic backgrounds of the Southern California angler population is critical. For instance, the survey team consisted of Spanish, Vietnamese, Mandarin, Cantonese, and Tagalog speakers, but lacked a Korean speaker and therefore had difficulty reaching Korean anglers. Also, finding that more than \(20 \%\) of anglers have less than a year's experience fishing leads to the recommendation to take into consideration the relative inexperience of anglers when conducting outreach, especially when developing messaging. Discovering that Black anglers report among the highest rates of consumption and consumption of DNC fish, as well as the lowest overall awareness of health advisory warnings and regard for these warnings, efforts to target this particular group shall be increased and sustained. Outreach activities targeting Asian anglers will take place in the winter months, as Asian angler activities increase in the winter months unlike the other ethnic groups do. Barred sand bass had the highest rate of intended consumption of all five fish species listed with the "Do-Not-Consume" status. Therefore, additional outreach focused on this species should be undertaken, with a strong recommendation to review risk findings that will come from the EPA 2014-15 Palos Verdes Shelf fish sampling activity.

While public outreach and education have made a difference in reducing the public health risk of consuming contaminated fish from the Palos Verdes Shelf superfund site, there is more to be done. With a deep understanding of the results from this study and the guidance provided, EPA and partners will continue to monitor vulnerable populations and carry out activities to reach, educate, and ultimately foster healthy fish consumption behaviors in all who consume fish caught in the impacted region.

\section*{SECTION 1}

\section*{INTRODUCTION}

\section*{SECTION 1 - INTRODUCTION}

\subsection*{1.1. HISTORY OF PALOS VERDES SHELF SUPERFUND SITE}

The Palos Verdes Superfund Site (Study Area) is an 88 -square kilometer (34-square mile) area of sediment on the continental shelf and slope off the coast of the Palos Verdes Peninsula in Los Angeles County, California, that has been contaminated with dichloro-diphenyl-trichloroethane (DDT) and polychlorinated biphenyls (PCBs). The primary source of chemical contaminants in the Study Area is effluent discharged through submarine outfalls at White Point on the Palos Verdes Peninsula. Since 1937, wastewaters have been discharged to the ocean off Palos Verdes Peninsula.

An estimated 1000 metric tons of DDTs were discharged from the outfalls from the 1950s through 1971. Approximately 10 percent of the discharge (estimated at 110 metric tons) settled on the Study Area, forming an identifiable layer of contaminated sediment from five to 60 centimeters thick. An additional 10 metric tons of PCBs are also estimated to remain in the sediment of the Study Area.

The area of highest DDT and PCB contamination in sediment is located roughly two miles offshore and extends approximately four miles westward along the shelf. However, contaminant levels in all ocean waters across the site exceeded the California Ocean Plan standards for DDT and PCBs. These chemicals of concern could accumulate over time to elevated levels in benthic and aquatic receptors in the Study Area. Sediment and surface water do not pose a direct threat to human health, but could pose an indirect human health threat due to consumption of fish contaminated with DDTs and PCBs in the sediments and surface water in the Study Area.

The 2002-2004 Southern California Coastal Marine Fish Contaminants Survey (EPA/NOAA, 2007) presented data showing that white croaker, barred sandbass, California Scorpion fish, Pacific Sardine, and Kelp bass were the five fish species in the Study Area with high concentrations of DDTs and PCBs, with white croaker having the highest concentration. DDT concentrations were also highest in white croaker from the Coastal Area (Ventura harbor to San Mateo Point) whereas Topsmelt had the highest concentrations of PCBs.

The Environmental Protection Agency (EPA) signed an Interim Record of Decision (IROD) (EPA, 2009) that selected an interim remedy for the Study Area. The interim remedy includes (a) placement of a cap of clean sediment over the most contaminated sediment areas, (b) monitoring natural recovery, and (c) continuance of the existing institutional controls (IC) program.

The remediation plan directly addresses the contaminated sediments. Specific remedial action objectives (RAOs) for the Study Area include (a) the reduction to acceptable levels the risks to human health due to ingestion of fish contaminated with DDTs and PCBs, (b) reduction to acceptable
levels the risk to the ecological community (i.e., benthic invertebrates and fish) from DDTs and PCBs, and (c) reduction of DDTs and PCBs in the Study Area surface waters to levels that meet the ambient water quality criteria (AWQC) for protection of human and ecological health.

The ICs program, on the other hand, focuses on modifying fish consumption behaviors to reduce exposure. The three major elements of the ICs program are public outreach and education, fish monitoring, and enforcement. The goal of the public outreach and education component is to increase awareness and understanding of existing fish advisories and fishing restrictions. A list of Do Not Consume (DNC) fish was developed to identify five fish that could potentially pose a threat to human health. Three of the DNC fish, namely, barred sand bass, white croaker, and topsmelt pose a health threat due to DDTs and PCBs from the Study Area. Two of the DNC fish, barracuda and black croaker, could potentially pose a health threat due to high levels of mercury from outside the Study Area. To mitigate the risk faced by anglers fishing in the Study Area, the Fish Contamination Education Collaborative (FCEC) was formed to conduct public outreach at public piers, jetties, beaches, intertidal zones, and to organize outreach efforts to anglers on private and commercial boats. The FCEC conducts angler outreach along the Southern California coastline from Santa Monica Pier in the north to Seal Beach Pier in the south.

\subsection*{1.2. CONTAMINATION \& ASSOCIATED HEALTH RISKS}

Consumption of fish contaminated with DDTs and PCBs could increase the likelihood of cancer over a lifetime of 70 years. Levels of these contaminants are routinely monitored in fish until the RAOs identified in the IROD are achieved. Human consumption of potentially contaminated fish is being limited by educating the public on safe fishing practices, by supporting state commercial fishing ban and fish advisories, and by monitoring potential exposures of consumers to contaminated fish through the ICs program.

The ICs program provides immediate protection to the public and reduces exposure of consumers to contaminated fish by partnering with other federal, state, and local agencies, as well as community-based organizations. In addition to establishing the FCEC, the EPA partners with OEHHA and Counties of Los Angeles and Orange in placing fish advisory warnings at popular fishing locations throughout the Study Area. The State Legislature passed the Marine Life Protection Act (MLPA, or Act) in 1999, which directed the California Department of Fish and Wildlife to reevaluate all existing marine protected areas (MPAs) and to redesign MPAs along California's 1,100-mile coast. The Act established MPAs to help protect the State's marine life, habitats, and ecosystems. The MLPA also directed the California Department of Fish and Wildlife to consider including the Study Area-from Santa Monica Pier to Seal Beach Pier—as a new MPA.

\subsection*{1.3. APPLICATION OF FINDINGS FROM PREVIOUS STUDIES}

One goal of the IROD is to reduce the health risks associated with the consumption of contaminated fish to an acceptable level. A Human Health Risk Evaluation (HHRE) was conducted (EPA, 2007) to evaluate potential cancer risks and noncancer hazards based on ocean fish data collected by the Montrose Settlements Restoration Program (MSRP) and EPA in 2002, and by the Los Angeles County Sanitation District in 2002. The MSRP/EPA fish sampling effort collected 23 species of fish representing a mix of water column and bottom feeders, and pelagic and local dwelling species. However, the HHRE (EPA, 2007) only used data from six fish species (White Croaker, Kelp Bass, Rockfish, Surfperches, California scorpionfish, and barred sandbass) caught from Point Fermin area to Redondo Canyon. These fish species were selected because the number of samples from each species was statistically valid. The HHRE applied the fish consumption rates that represented the reasonable maximum exposure (RME) or high-end fish consumption scenario and the average or central tendency exposure (CTE) scenario (Santa Monica Bay Restoration Program [SMBRP], 1994). The HHRE evaluated two populations of consumers, namely, all anglers and Asian anglers who consumed fish at a higher rate. The results of the HHRE indicated that for all six species, the cancer risk estimates based on the consumption rates of both angler populations (i.e., all anglers and of Asian anglers) exceeded one-in-a million ( \(1 \times 10^{-6}\) ) for the RME and CTE scenarios. The noncancer hazard index estimates for both angler populations exceeded the threshold level of one under the RME scenario but were less than one under the CTE scenario, except for the white croaker, California Scorpion fish, and Barred Sandbass.

With the population in the greater Los Angeles/Orange County areas having undergone significant economic and demographic changes, EPA deemed it essential to update the data on angler fish consumption habits. Changes in fishing patterns, consumption or cooking methods, or angler demographics could result in either increased or reduced health risks to angler consumers.

The methodologies and findings presented in this Fish Consumption Study will indicate whether or not the ICs program has been effective in reducing human health risks by preventing exposures to fish contaminated with DDTs and PCBs.

\section*{SECTION 2}

\section*{STUDY GOAL AND OBJECTIVES}

\section*{SECTION 2 - GOAL AND OBJECTIVES}

\subsection*{2.1. GOAL}

The goal of the Seafood Consumption Study (the Study) is to update the data on seafood consumption patterns of anglers fishing within an area that extends beyond the Superfund Site's Study Area and is referred to as the "study region". The updated seafood consumption rates will provide supporting information in determining whether the risks associated with consumption of fish in the study region had been reduced to acceptable levels due, in part, to the ICs program.

\subsection*{2.2. OBJECTIVES}

The objectives of this study include the following:
- To conduct a statistically valid survey of recreational anglers that fish in the study region to determine the fish species that are being caught and consumed at the highest rates;
- To gather quantitative data that can be used to characterize exposures of the general fishing population to DDT and PCBs from consumption of fish and shellfish caught in the study region;
- To identify demographic and ethnic subgroups within the general fishing population of the study region that may be consuming large quantities of contaminants through selection, quantity, and/or cooking method of fish species; and
- To gather sufficient information to determine whether the existing human health risk assessment needs to be revised before its use in a final Record of Decision.

\section*{SECTION 3}

\section*{STUDY DESIGN AND ADMINISTRATION}

\section*{SECTION 3 - STUDY DESIGN AND ADMINISTRATION}

\subsection*{3.1. STUDY OVERSIGHT AND STAFF}

The Study was designed and administered with the help and support of a diverse cross-section of public and nonprofit entities. The Study was funded and overseen by the EPA and executed by EPA Contractor, S. Groner Associates, Inc. (SGA).

The EPA formed a Technical Advisory Committee (TAC) which provided critical input and support in the design of the survey tools and analysis of the collected data. The TAC also assisted in report preparation and review. Members of the Committee include representatives from federal, state, and local government agencies, academic institutions, and environmental organizations (see Acknowledgements for a full list of Committee members).

Professor Michael Franklin of the California State University at Northridge was the Study's Consulting lchthyologist and provided training for surveyors on identifying fish species.

The survey tools were designed by a consulting firm, Action Research, who also analyzed survey data. Action Research provided support with training surveyors and with issues that came up during data collection and report preparation.

\subsection*{3.2. STUDY OVERVIEW}

The Study was designed to closely follow the 1994 Santa Monica Bay Seafood Consumption Study so that the data collected could be directly compared and to provide a comparison of changes in demographic and angler catch and consumption data over the 20-year period. Similar to the 1994 Study, data were collected for a full year. The study data were collected between February 2012 and January 2013 at fishing sites throughout the study region. The manner in which data collection activities were scheduled allowed for a representative sample of all anglers fishing in the study region. The survey design was based on a stratified random sampling, which took into account geographic region, fishing mode, time of day, and seasonality. The resulting approach was designed to produce a representative sample of the local angler population. Data were collected with industry-standard confidence intervals for each group and with acceptable levels of statistical power.

\subsection*{3.3. SURVEY METHOD}

All surveys and data collection were conducted through personal interviews. Indirect survey methods such as mail and phone surveys were not selected because a significant amount of fishing activity occurs on public piers in the study region. However, a complete target list of anglers could not be produced because fishing licenses are not required to fish on public piers. On-site interviews were conducted by bilingual surveyors to facilitate the participation of anglers who may have difficulty understanding written surveys due to literacy, cultural, and/or language barriers. Finally, for the purpose of estimating consumption rate, surveyors used a physical model of a fish with a delineation of the fillet portion so that information can be obtained about the quantity of fish typically eaten by the respondent.

\subsection*{3.4. RESPONSE RATE GOAL}

The percent response rate is equivalent to the number of anglers who agreed to participate in the survey divided by the number of all anglers approached, including those who refused to be surveyed. Consistent with the 1994 Study, a target of 1000 respondents was established. The goal was a response rate of \(75 \%\). The 1994 Study indicated that the angler response rate was lowest on piers ( \(66 \%\) ) and highest at intertidal sites ( \(100 \%\) ).

The ultimate sample size was smaller than anticipated due to a notable decrease in the number of anglers since 1994. Census estimates indicate a net 64\% drop in anglers over the last two decades. Despite that, the number of respondents afforded statistical significance across all demographic strata.

\subsection*{3.5. SITE SELECTION}

\subsection*{3.5.1. GEOGRAPHIC LOGISTICS}

Figure 1 shows the 61 fishing sites within the study region that were identified for data collection. A complete list of sites and a map of the study region are in Appendix A. The geographic area comprising the entire study region is further divided into four geographical sub-regions, namely: Central Bay (Santa Monica Municipal Pier to Playa Del Rey Beach), South Bay (Manhattan Beach to Redondo Beach), Los Angeles Harbor (Cabrillo Pier and Cabrillo Boat Ramp), and Long Beach (Cabrillo Boat Ramp to Seal Beach Pier). The study region for this study differs slightly from the 1994 Study, which included the northern region from Paradise Cove to Malibu, and excluded the region from Cabrillo to Seal Beach.

Figure 1. Palos Verdes Shelf Superfund Site sampling locations.


Preliminary scouting trips were taken to identify target locations and to assess the level of fishing at each site. Fishing sites with limited activity were replaced with alternate sites known to attract more anglers. Alternate sites were always from within the same geographic sub-region as the site that was being replaced to maintain the geographical stratification.

\subsection*{3.5.2. MODES OF FISHING}

The four modes of fishing included in this study are pier or jetty, private boat, charter boat, and beach or intertidal zone. Surveyed sites were selected to provide adequate coverage of each mode within each geographic sub-region identified in Section 3.5.1. Sampling procedures were modified by taking into account the characteristic nature of the various modes at each location.

Selected sites for each fishing mode are discussed below:
- Pier or Jetty. Piers or jetties with significant fishing activity were selected. A total of 23 sites were included for the pier or jetty mode: Cabrillo Fishing Pier, Hermosa Beach Municipal Pier, Manhattan Beach Municipal Pier, Marina Del Rey Jetty, Ballona Creek Bridge and Jetties, Playa Del Rey Beach, Redondo Sport Fishing Pier and Small Jetty, Santa Monica Municipal Pier, King Harbor South Jetty, King Harbor Breakwater, San Pedro Breakwater, Venice Fishing Pier, Redondo Beach Municipal Pier, Shoreline Park Piers, Shoreline Marina Piers, Shoreline Village East Jetty, Belmont Pier, Pier J, Rainbow Harbor, San Pedro Breakwater, Alamitos Bay West Jetty, Seaport Village Jetty, and Seal Beach Pier. To reach
the target sample size, two of the sites that were initially selected were replaced due to known low fishing activity. As stated in Section 3.5.1, the alternate sites were located in the same geographic sub-region.
- Private Boats. Selected nine boat launch sites with fishing activity include: Rocky Point Skiff Rentals, Cabrillo Boat Ramp, King Harbor Boat Hoist, Marina Del Rey Boat Ramp, South Shores Launch Ramp, Belmont Pier Launch Area, Granada Launch Area, Claremont Launch Ramp, and Marine Stadium Launch Area.
- Charter Boats. Surveyors targeted seven charter boat locations that offered full- and halfday trips: Marina Del Rey Sportfishing, Rocky Point Charters, Redondo Sport Fishing Boats, 22nd Street Landing, LA Harbor Sportfishing, Long Beach Sportfishing, and Long Beach Marina Sportfishing.
- Beach or Intertidal Zone. Surveys were conducted at beaches adjacent to the pier or jetty locations being sampled, for a combined total of 22 individual sites: Santa Monica State Beach, Venice City Beach, Burton Chace Fishing Platform, Marina del Rey Beach, Marina del Rey Fishing Dock, Playa Del Rey Beach, Dockweller State Beach, El Porto Beach, Manhattan County Beach, Hermosa City Beach, Redondo County Beach, Torrance County Beach, Malaga Cove, Bluff Cove, Lunada Bay, Ablaone Cove, Portuguese Bend, Royal Palms Beach/White Point Beach, Cabrillo Beach, Shoreline Village, Cherry Beach, Bayshore, and Seal Beach.

\subsection*{3.6. SAMPLING PERIOD}

One-half of the data collection days occurred on weekdays (Monday through Friday) and one-half took place on weekends (Saturday and Sunday) to incorporate changes in angler activity. The volume of weekend anglers is higher relative to the rest of the week. Consequently, there were 64 collection days on the weekdays and 64 on the weekends, for a total of 128 collection days over the year.

To account for variations attributable to time of day, surveys at the selected sites were randomly chosen to be conducted during specific time periods. Surveys at Pier or Jetty, Private Boats, and Beach or Intertidal Zone sites were randomly conducted during one of three time periods: morning (8:00am to \(12: 00 \mathrm{pm}\) ), afternoon ( \(12: 00 \mathrm{pm}\) to \(4: 00 \mathrm{pm}\) ), or evening ( \(4: 00 \mathrm{pm}\) to \(8: 00 \mathrm{pm}\) ). Surveyors remained at a single site for the entire shift.

Surveys at charter boat sites were conducted during either one of two time periods, early period (10:30am to \(2: 30 \mathrm{pm}\) ) or late period ( \(2: 30 \mathrm{pm}\) to \(4: 30 \mathrm{pm}\) ). These time periods were occasionally adjusted due to changes in boating schedules and seasonal changes.

\subsection*{3.6.1. SEASONALITY IN SAMPLING}

Table 1 shows weekday and weekend collection days for the summer and non-summer periods to account for seasonality. Surveys conducted on weekdays and weekends during the four summer months (May through August) each represent a quadrant for a total of two quadrants. Weekday and weekend surveys conducted during the eight non-summer months (September through April) represented the remaining two quadrants. Each of the four quadrants was sampled equally for each of the four fishing modes. Hence, the eight surveys per mode resulted in 32 data collection days for the four modes in each quadrant, and a total of 128-collection days for the four quadrants.
\begin{tabular}{|ccc|}
\hline Table 1. Seasonal survey collection days (per each of the four modes). & \\
\hline & Summer (May - Aug) & Non-Summer (Sept - Apr) \\
\hline Weekdays & \(2 /\) month & \(1 / \mathrm{month}\) \\
Weekends & \((8\) total surveys \(/\) mode) & \(2 /\) month \\
(8 total surveys \(/\) mode)
\end{tabular}

\subsection*{3.7. SURVEY INSTRUMENTS}

Surveyors used the following survey instruments to collect data from anglers. Please refer to the appropriate appendices to view copies and photos of all the instruments. All surveyors were provided with each of the following survey instruments:
- Survey site map (Appendix A)
- Survey questionnaires (Appendix B)
- Shift summary sheet (Appendix C)
- Refusal log (Appendix C)
- Beaufort Sea Scale (Appendix D)
- Census and site summary forms (Appendix E)
- A weather report to help record conditions on the Census (Appendix E)
- Map of the study region (Appendix F)
- Plastic model of whole fish with a representation of internal parts and fillet (Appendix G)
- Fish identification cards (Appendix H)
- Language identification card (Appendix I)
- Tape measure to determine the length of the various fish species found in participating anglers' buckets (Appendix J)
- Fisherman's gloves to handle the fish in the anglers' buckets in order to identify type of species and/or measure their lengths (Appendix J)
- FCEC Tip cards (Appendix K)

\subsection*{3.7.1. QUESTIONNAIRE}

The questionnaire was designed to gather information needed to address the specific objectives presented in Section 2.2 of this report. Responses to the 20 -questions in the questionnaire would provide a better understanding of the demographic composition of the anglers within the study region, angler consumption rates of locally caught fish, types of fish eaten, the portion size consumed, preferred cooking methods, and awareness and knowledge of health advisories. To facilitate administration and data entry, the questions followed a partially closed-end question format that consisted of discrete response categories and an "other" category for a write-in response, if necessary. The questionnaire was also translated into Spanish, Vietnamese, Tagalog, and Chinese.

The questionnaire was reviewed and approved by the Office of Management and Budget (OMB) to ensure that the surveys were conducted pursuant to the Standards and Guidelines of the OMB. Trained surveyors personally administered the questionnaire to anglers at selected survey sites. All surveys were conducted anonymously, and no personally identifying information was collected from respondents. Participation in the Study was completely voluntary, and anglers could refuse or withdraw from the survey at any time.

\subsection*{3.7.2. CENSUS}

Prior to surveying anglers in each of the proposed locations, the field surveyors conducted a census of the survey sites. The census collected site-specific information, including temperature, weather, sea state, number of anglers, and approximate demographics of the anglers at the survey site. The survey site's unique code (coded for data analysis), fishing mode category, date, and start time were also recorded.

\subsection*{3.7.3. REFUSAL LOG}

Refusal by anglers to participate in the survey was recorded in a refusal log. Information including the angler's gender, estimated age, language, ethnicity, as well as the location and time, were coded by the surveyor.

\subsection*{3.7.4. BEAUFORT SEA STATE SCALE}

The Beaufort Sea State Scale is an empirical measure that relates wind speed to observed conditions at sea or on land. To ensure consistent data collection methods, surveyors referred to this scale when recording the sea state in the census.

\subsection*{3.7.5. REGIONAL MAP}

Surveyors carried a regional map to indicate to anglers the study region, which spans from Santa Monica to Seal Beach piers.

\subsection*{3.7.6. FISH MODEL}

Surveyors showed the angler a plastic cast model of a whole fish to assist the angler in estimating the portion size and in identifying the specific parts of the fish typically consumed each time. The size of a 150 -gram fillet portion is demarcated on the side of the fish model.

\subsection*{3.7.7. FISH IDENTIFICATION CARDS}

Fish identification cards were provided to aid surveyors in identifying the fish species observed in each angler's bucket. One 8.5"x11" card developed by the Montrose Settlements Restoration Program (MSRP) depicts 23 common subsistence and sport fish of Southern California, including all five DNC fish. Two additional detailed informational cards were also developed and used during survey administration. One of these cards depicted the five DNC fish and the other showed eight fish species commonly caught locally with detailed descriptions of their appearance.

\subsection*{3.7.8. LANGUAGE IDENTIFICATION CARD}

The language identification card helped surveyors communicate with anglers who did not speak English or one of the non-English languages spoken by surveyors. In such a case, surveyors presented the language card to the angler so that the angler could identify their spoken language. Surveyors attempted to match anglers who did not speak English with a surveyor who spoke their language. If an angler refused due to the language barrier, this information was recorded on the survey refusal log, with language being the reason for the uncollected data.

\subsection*{3.7.9. TIP CARD}

At their discretion, surveyors provided an educational tip card if the angler inquired about the program after completion of the survey. The tip card is an outreach material developed by FCEC to educate anglers about DNC fish species and other fish species that could be consumed in moderation. The tip card is the primary outreach tool distributed to anglers on an ongoing basis as a component of the FCEC angler outreach program.

\subsection*{3.7.10. SHIFT SUMMARY SHEET}

Surveyors tracked information throughout the course of each shift. At the end of the shift, they consolidated their separate information onto a single shift summary sheet. The summary sheet
included the total number of completions and refusals, along with relevant information such as refusal information and observations of the day.

\subsection*{3.8. FIELD SURVEY METHODS}

\subsection*{3.8.1. BASIC SURVEY METHODOLOGY}

Surveyors were trained to ensure that the surveying methodology is consistent. Surveyors were also trained to identify the most common fish species caught in the study region and were provided with materials to assist in the identification process. Surveys were always conducted by a team of two surveyors, along with a backup surveyor. Each survey shift was started by collecting information on the survey site, temperature, weather, sea state, number of anglers, and approximate demographics of the anglers at the study region.

Past experience with recreational anglers in the study region demonstrated a diverse population. Therefore, each survey team included at least one surveyor who is fluent in a language other than English, including Spanish, and either Vietnamese, Tagalog, Mandarin or Cantonese. This fluency facilitated surveyors in conducting interviews with a paper-and-pencil questionnaire in the native language of more than \(99 \%\) of respondents. Surveyors with specific language skills were assigned to locations where most of the anglers spoke the corresponding language (i.e. Spanish speakers at Cabrillo Pier, Tagalog speakers at Redondo Pier, etc.).

\subsection*{3.8.2. SURVEY VARIATIONS BY FISHING MODE}

The approach used to survey anglers differed according to each fishing mode:
- Pier or Jetty. Interviews were conducted as frequently as possible in the study region where anglers are actively fishing. If anglers encountered in the study region are not actively fishing (i.e., may be walking to or from their fishing site), surveyors initially confirmed that the angler had fished in the study region by showing a map before conducting an interview.
- Private Boats. Surveyors interviewed anglers as they were preparing to depart or were packing up their boats. Surveyors also targeted fueling stations and bait shops near marinas to reach anglers with private boats. This mode had the lowest refusal rate because the anglers in this mode tended to have more time while preparing their boats and, therefore, were more inclined to be surveyed than in some of the other fishing modes.
- Charter Boats. Surveys were not conducted on the charter boats. Instead, surveyors approached anglers before boarding or while they were waiting for the boats because they tended to have more time to spare and were in no hurry. Although most anglers were
often in a hurry to go home after their fishing trip, some anglers answered the survey questions while having their fish filleted or while walking to the parking lot.
- Beach or Intertidal Zone. Surveyors searched for anglers on the beach or in intertidal zones for two hours prior to surveying at pier/jetty locations. Anglers on the beach who were within sight from the pier or jetty (using binoculars) were approached and interviewed while they were fishing.

\subsection*{3.8.3. RANDOM SAMPLING IN HIGH VOLUME AREAS}

Surveyors attempted to survey every angler during each day of data collection. When the volume of anglers was high, a random sampling procedure was used to target every \(k\)-th angler where " \(k\) " was a ratio of the total number of anglers surveyed to the total population. The " \(k\) " value was set by a pre-established randomization sheet that took into consideration the volume of anglers at the given location. This procedure aided in providing a representative sample when surveyors were unable to collect data from all anglers.

\subsection*{3.8.4. CONDUCTING INTERVIEWS IN NON-ENGLISH LANGUAGES}

Southern California consists of a diverse population. As indicated in Section 3.8.1, surveyors with specific non-English language skills were assigned to locations where majority of the anglers spoke the same non-English language.

\subsection*{3.9. ADMINISTERING THE SURVEY}

Surveyors approached and asked target anglers if they were willing to participate in a survey. Participation was entirely voluntary and respondents could quit at any time. The survey was conducted verbally within five to ten minutes, and responses were recorded in a paper-and-pencil form. Prior experience indicated that paper-pencil administration is the best mode of field data collection. The project team considered the use of tablets as data collection devices, but previous outreach experience showed that such devices could introduce problems in the field, especially in wet coastal locations. Using paper forms provided a hard copy of the collected information, eliminated technical difficulties in the field, avoided loss of data due to technical connectivity glitches, and reduced up-front administration time.

The questionnaire included the following categories of information:
- Basic site characteristics;
- The angler's fishing history at the location and other locations within the study region;
- Inventory of each angler's catch;
- Seafood consumption and preparation patterns;
- Behavioral patterns with seafood that had been caught;
- Health warning awareness; and
- Demographic information.

Surveyors assisted anglers in identifying different fish species by using pictures of fish common in the study region. Surveyors also used individual training and fish identification cards to assist in the identification process. When all these methods proved inadequate, surveyors enlisted Professor Franklin's assistance via a photo text message.

To ascertain what portions of fish are routinely consumed by anglers, surveyors utilized a fish model so that survey participants could indicate which parts of the fish were consumed. This approach was modeled after the 1994 Study (SCCWRP/MBC, 1994) but expanded to include an entire fish rather than merely a fillet (see Appendix G for a review of the model). By presenting a model of the entire fish, linguistic and cultural barriers were reduced by affording a universal standard in identifying what portions of the fish were consumed. This is an important methodological control because all populations and individual participants may have different perceptions of what constitutes a "fillet," or any other parts of the fish.

After each shift, survey teams completed a summary sheet that included the total number of completions and refusals for each shift, along with other relevant information such as angler demographics and reason for refusals.

\subsection*{3.10.STUDY LIMITATIONS}

Key limitations of the Study include the following:
- Avidity bias - The probability that anglers who are more active (i.e., avid) are more likely to be interviewed in fishing locations. Prior research had shown that estimates of consumption can be affected by angling avidity (EHIB 2000). However, the results of this Study were not adjusted for avidity in order to be consistent with the prior seafood consumption study (SCCWRP/MBC, 1994) that did not adjust for avidity.
- Outreach saturation - The Fish Contamination Education Collaborative (FCEC) monitors the effectiveness of surveys, messages, and angler education (i.e., at events and through community based organizations). Prior experience with FCEC efforts may have influenced anglers' responses to questions pertaining to the health advisory and fish consumption. Inundating the anglers with information could result in survey fatigue that could potentially affect the number of anglers who decline the surveys or provide detailed responses.
- Linguistic barriers - While the surveyor team was able to communicate in Spanish, Mandarin, Cantonese, Vietnamese, and Tagalog, the survey team did not have anyone who could
communicate in the Korean language. The absence of surveyors who could speak the Korean language limited the ability to survey a large Korean angler population who did not speak English.
- Smaller sample size than the 1994 Study (SCCWRP/MBC, 1994) - The reduced sample size is attributed to the observed \(64 \%\) decline in overall angler population. Although the sample size remains statistically significant, a smaller sample size increases the margin of error associated with the conclusions drawn from the data, particularly, the data localized to a particular stratum or mode.
- Rate of Decliners - Table 2 shows that nearly \(23 \%\) of anglers who were approached \((205 / 898)\) declined the surveys. The two fishing modes with the highest rate of decliners are pier or jetty and charter boats. Language barrier was the primary reason for the rate of decliners at piers. Anglers with language barriers or who declined due to lack of time may be underreported in these findings.
\begin{tabular}{|lcccl|}
\hline Table 2. Angler rationale for declining to be interviewed by fishing mode. \\
\hline Mode & \begin{tabular}{c} 
Percent \\
Declined
\end{tabular} & Declined & Approached & Reason for decline \\
\hline Pier or Jetty & \(24.7 \%\) & 111 & 449 & Language difficult or lack of \\
Charter Boat & \(26.5 \%\) & 68 & 257 & tace. \\
Private boat time \\
Beach or Intertidal & \(13.7 \%\) & 22 & 161 & Lack of time \\
Zone & \(12.9 \%\) & 4 & 31 & Language difficulties \\
\hline Total & \(22.8 \%\) & 205 & 898 & \(\mathrm{n} / \mathrm{a}\) \\
\hline
\end{tabular}

\section*{SECTION 4}

\section*{DATA MANAGEMENT, QUALITY ASSURANCE \& CONTROL, AND DATA ANALYSIS}

\section*{SECTION 4 - DATA MANAGEMENT, QUALITY ASSURANCE \& CONTROL, AND DATA ANALYSIS}

\subsection*{4.1. DATA MANAGEMENT}

Data collected through surveys were managed to ensure quality and accuracy throughout the process. At the end of each shift, surveyors returned the hardcopy paper questionnaires and log sheets for physical storage. All questionnaires were preprinted with unique sequential identification numbers for data management purposes, and stored in unique shift folders. Surveyors entered the data into a Microsoft Access database. The coded-in variables are in Appendix L. Within 72 hours, new entries were checked against the original questionnaire for data entry errors by a surveyor other than the surveyor who gathered and originally entered the data.

Entries were reviewed and manually corrected if specific information was missing, entered incorrectly, or entered in a manner inconsistent with protocols. If missing information cannot be manually corrected, a "Missing Case" was created. "Missing Case" is also applied when there is no response to a specific question. In some instances, "don't know" or "not applicable" are considered missing cases when they are not directly related to the analysis being conducted, and are not included in the presented percentages.

Each survey form was uniquely numbered for identification and retrieval purposes. Text entries were manually coded into predefined categories. The Access database files were then converted to a data file compatible with SPSS (Statistical Package for the Social Sciences) version 19 in order to conduct data editing and analyses. All paper questionnaires were scanned into a digital format for backup.

\subsection*{4.2. STATISTICAL POWER AND MARGIN OF ERROR}

The final working sample size of 693 completed interviews allows for statistical estimates of the full population at \(\pm 4 \%\) margin of error (using a \(95 \%\) confidence interval). This established margin of error indicates that there is a \(95 \%\) confidence that the values derived from the surveys could be higher or lower than four percent of the actual value if the entire population of anglers had been interviewed and had responded to the interviews. Table 3 shows that the margins of error among the different fishing modes ranged from \(\pm 5 \%\) for the Pier or Jetty mode and \(\pm 18 \%\) for the Beach
or Intertidal Zone. The sample provides sufficient statistical power for detecting small-to-medium sized effects using traditional inferential statistics, such as regression, chi-square, or meancomparisons.

Table 3. Margin of error for each fishing mode.
\begin{tabular}{|lcc|}
\hline Mode & Sample Size & Margin of Error (95\% CI) \\
\hline Pier or Jetty & 338 & \(\pm 5 \%\) \\
Charter Boat & 189 & \(\pm 7 \%\) \\
Private boat & 139 & \(\pm 8 \%\) \\
Beach/Intertidal Zone & 27 & \(\pm 18 \%\) \\
\hline Total & 693 & \(\pm 4 \%\) \\
\hline
\end{tabular}

\subsection*{4.3. QUALITY ASSURANCE AND QUALITY CONTROL}

A range of quality assurance (QA) and quality control (QC) measures were incorporated into the survey design. The first measure was to ensure that all survey materials and protocols were reviewed by the Technical Advisory Committee. Surveyors were selected based on experience in research and outreach, and on targeted linguistic skills. Training was provided in all aspects of survey administration, including best practices, fish identification, and data management. In addition, all survey staff were given the same equipment set to facilitate survey collection. A complete list and discussion of this equipment is available in Appendix J.

The summarized data from the surveys (see Section 3.9) were compared to the census information to assure consistency. Non-identifying personal information was collected from each respondent in the form of initials and birth year to create a near-unique code to minimize the chance that an angler was randomly sampled more than once. Additional ideas on how to improve response rates or the process were discussed during a 15-minute debrief session with a shift supervisor.

Hard copy data were scanned and archived. Random entries in the data that were uploaded to Microsoft Access were identified for verification to ensure quality control. Quality control was always conducted by someone other than the data collector to mitigate bias. All data reviews occurred within 72 hours of collection and individual surveyors were monitored for error rates. Problems with both surveyors and survey questions were identified. After completion of the survey collection period, all of the data were reviewed to correct data entry errors or inconsistencies, if any, before conversion into SPSS (Statistical Package for Social Sciences) version 19 for subsequent analysis.

The entire survey administration team met every quarter at an all-hands meeting to discuss lessons learned in the field, data entry, morale, and any issues encountered in the preceding quarter. The
meeting included reviews of key metrics, successes and challenges, and setting the survey schedule for the upcoming quarter. Tactics were adjusted when necessary.

\subsection*{4.4. CALCULATION OF FISH CONSUMPTION RATE}

A primary goal of the Study is to calculate the rate of seafood consumption for anglers fishing at the study region. Consequently, two different measures of seafood consumption were estimated for each angler. The first was an overall consumption estimate, based on reported frequency of eating fish from the study region over the past four weeks (Question Q3), coupled with the amount of fish eaten in a typical meal (question Q6). The four-week period was consistent with the time period used in the 1994 report, and it was easier for anglers to recall their fish consumption within this time period. Based on a 150-gram fillet representation, each angler estimated what portion of the 150 gram fillet was consumed each time. The portion consumed was multiplied by 150 and by the frequency of consumption during the four-week period to calculate the total grams consumed over four weeks. The calculated total grams consumed over four weeks was divided by 28 (number of days in the past four weeks) to calculated the consumption rate of grams/individual/day.

The second measure of consumption was based on each angler's reported frequency and consumption of specific species. Anglers who had fish in their buckets were asked about the frequency and quantity eaten for each fish type identified in their bucket (question Q12 and Q15). All anglers were asked about consumption for the five DNC fish (questions Q17 and Q20). However, if anglers had any of the five DNC fish in their bucket, they were not asked again about frequency and quantity eaten for that particular species.

The angler was shown a photograph of each of the five DNC fish (questions Q16-Q20), and asked how many times they had eaten any one type of fish in the past four weeks. The angler was shown a fillet portion size that was approximately 10 centimeters \((\mathrm{cm}) \times 7 \mathrm{~cm} \times 2 \mathrm{~cm}\) thick, which represents the standard size of 150 grams for a typical fish meal. The estimated amount of a 150gram portion that was consumed each meal was multiplied by 150 , and the product was multipled by the angler's frequency of consumption during the four weeks prior to the interview. The total number of grams consumed was divided by 28 (four weeks) to produce an estimated grams consumed per day for each type of DNC fish. This measure of consumption includes responses from anglers who caught (question Q9) or stated they had caught one of the five DNC fish (question Q16).

Descriptive statistics for consumption rates are presented in the Results Section.

\subsection*{4.5. INTERPRETING FISH CONSUMPTION VOLUME DATA}

The Upper Confidence Limit and the Upper Decile are two measures of data used to describe fish consumption volume. Both statistical measurements help provide a perspective on measurements of mean and median.

The Upper Confidence Limit (UCL) is a measurement of confidence with regards to the reported mean. In this Study a \(95 \%\) confidence level is used. The \(95 \%\) UCL provides reasonable confidence that the mean is not underestimated. The \(95 \%\) UCL for a mean is defined as a value that, when repeatedly calculated for randomly drawn subsets of "n" samples, equals or exceeds the true population mean \(95 \%\) of the time.

When the data are separated into 10 equal parts, each part is called a decile. This Study applies the \(90 \%\) Upper Decile (UD), for determining the reasonable maximum exposure consumption rates for higher end and higher risk anglers and consumers.

\subsection*{4.6. STATISTICAL METHODS}

Analyses were conducted to describe fishing populations, and to measure consumption frequency and habits of anglers in the study region. Descriptive statistics provided information about the fishing mode, characteristics of the fishing population, fish species, fish consumption, and awareness of consumption warnings for fish in the study region. Categorical variables were analyzed using chisquare tests. Continuous variables that predict consumption were analyzed with correlations and with regression analyses. The statistical analyses reported throughout this report were conducted using SPSS version 19.

\section*{SECTION 5}

\section*{RESULTS}

\section*{SECTION 5 - RESULTS}

This section presents information that addresses the goals and objectives of this Study (see Section 2). Tabulated data, figures, and graphs shown in this section illustrate the results and key trends. A more detailed data presentation is included in Appendix M.

This section begins by describing the fishing mode, language of interview, and time of year the surveys were conducted. The section will then describe the demographic characteristics of the respondents, exposure, seafood consumption, and health advisory awareness findings.

\subsection*{5.1. SUMMARY OF SURVEY RESULTS}

\subsection*{5.1.1. ANGLER CHARACTERISTICS}

Table 4 shows that the anglers are predominantly male (94.2\%), with the Hispanic/Latino/Spanish ethnic group most represented at \(36.9 \%\). Of Asian anglers that represent \(23.8 \%\) of all anglers surveyed, Filipinos comprised \(40.9 \%\) of that ethnic group. Table 4 also shows that \(92.9 \%\) of the anglers spoke English.

Table 4. Population level angler characteristics ( \(\mathbf{N}=693\) ).
\begin{tabular}{|c|c|c|}
\hline Gender & Count & Percentage \\
\hline Male & 653 & 94.2\% \\
\hline Female & 40 & 5.8\% \\
\hline Total & 693 & 100.0\% \\
\hline Anglers of Hispanic, Latino, or Spanish Origin (Q25) & Count & Percentage \\
\hline No & 406 & 60.4\% \\
\hline Yes & 266 & 39.6\% \\
\hline Total & 672 & 100.0\% \\
\hline Ethnicity (Q26) & Count & Percentage \\
\hline Hispanic, Latino, Spanish & 256 & 36.9\% \\
\hline White & 167 & 24.1\% \\
\hline Asian & 165 & 23.8\% \\
\hline Black & 43 & 6.2\% \\
\hline Other (including Mixed) & 62 & 8.9\% \\
\hline Total & 693 & 100.0\% \\
\hline Asian Ethnicity Specified & Count & Percentage \\
\hline Filipino & 63 & 40.9\% \\
\hline Japanese & 24 & 15.6\% \\
\hline Korean & 19 & 12.3\% \\
\hline Chinese & 16 & 10.4\% \\
\hline Vietnamese & 14 & 9.1\% \\
\hline Other & 18 & 11.7\% \\
\hline Total (excluding 11 Asian anglers who declined) & 154 & 100.0\% \\
\hline Language of Survey & Count & Percentage \\
\hline English & 644 & 92.9\% \\
\hline Spanish & 48 & 6.9\% \\
\hline Vietnamese & 1 & 0.1\% \\
\hline Total & 693 & 100.0\% \\
\hline & Mean & Median \\
\hline Age (Q24) & 44 years & 43 years \\
\hline
\end{tabular}

\subsection*{5.2. VARIATIONS BY FISHING MODE AND SEASON}

The study design distributed survey dates across days of the week, seasons, and fishing modes to ensure a statistically significant representative sample in all strata. Table 5 shows the distribution of different fishing modes during the summer and non-summer months. Over the 12 -month interview period, approximately \(53 \%(N=366)\) of the surveys were collected during the four summer months of June through September. The remaining 47\% ( \(\mathrm{N}=327\) ) were distributed throughout the eight winter months of October through May.

Table 5. Interview mode across summer and non summer months ( \(\mathbf{N}=693\) ).
\begin{tabular}{|lrrrr|r|}
\hline & \multicolumn{2}{c}{ Summer } & \multicolumn{2}{c|}{ Non-Summer } & Total \\
\hline Mode & \# interviews & \% by season & \# interviews & \% by season & Count \\
\hline Pier or Jetty & 146 & \(39.9 \%\) & 192 & \(58.7 \%\) & 338 \\
Private boat & 80 & \(21.9 \%\) & 59 & \(18.0 \%\) & 139 \\
Charter boat & 118 & \(32.2 \%\) & 71 & \(21.7 \%\) & 189 \\
Beach/Intertidal zone & 22 & \(6.0 \%\) & 5 & \(1.5 \%\) & 27 \\
\hline Total by count & 366 & \(100.0 \%\) & 327 & \(100.0 \%\) & 693 \\
Total by season & 366 & \(52.8 \%\) & 327 & \(47.2 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Major findings of the survey are the following:
- Anglers in charter boats are more prevalent in the summer months (32.2\%) compared to the winter months (21.7\%).
- All fishing modes, except piers/jetties, experienced a decline in number of anglers per month during the winter months compared to summer months. Based on monthly usage of each mode, anglers on piers/jetties had approximately 37 anglers a month during the summer, and 24 anglers a month during the winter months. There were approximately 30 anglers a month on charter boats during the summer months and approximately 9 anglers a month during the winter months. Anglers in private boats and in beach/intertidal zones also declined in the winter months compared to the summer months. Overall, the data indicate that piers/jetties have a more consistent usage pattern throughout the year.

\subsection*{5.3. SURVEY DECLINERS}

Table 6 shows the number of anglers in each fishing mode that declined the survey and the reason for declining. Overall, twenty-three percent of anglers declined to be interviewed ( 205 decliners out of 898 anglers approached). Survey records indicated that ninety-four percent of those who declined the surveys were male.

Among the 205 individuals who declined to be interviewed, lack of time and language difficulties were cited as the main reasons for declining. The number of decliners ( \(26.5 \%\) ) among charter boat anglers was slightly higher than the number of decliners ( \(24.7 \%\) ) in piers/jetties due to lack of time. Anglers on pier/jetty locations most often cited lack of time and language difficulties as reasons for not participating. Anglers in charter boats and private boat areas indicated lack of time as the reason for declining the surveys. Language difficulties were cited as the main reason for survey refusals at beach/intertidal zones.

Table 6. Angler rationale for declining to be interviewed by fishing mode.
\begin{tabular}{|c|c|c|c|c|}
\hline Mode & Percent Declined & Declined & Approached & Reason for decline \\
\hline Pier or Jetty & 24.7\% & 111 & 449 & Language difficult or lack of time. \\
\hline Charter Boat & 26.5\% & 68 & 257 & Lack of time \\
\hline Private boat & 13.7\% & 22 & 161 & Lack of time \\
\hline Beach or Intertidal Zone & 12.9\% & 4 & 31 & Language difficulties \\
\hline Total & 22.8\% & 205 & 898 & \(\mathrm{n} / \mathrm{a}\) \\
\hline
\end{tabular}

\subsection*{5.4. ANGLER CHARACTERISTICS}

\subsection*{5.4.1. ANGLER AGE}

Figure 2 shows that anglers ranged in age from 14 to 87 years of age with a median of 44 years of age.

Figure 2. Histogram of angler age (in three year intervals) ( \(\mathrm{N}=693\) ).


\subsection*{5.4.2. ANGLER ETHNICITY DEMOGRAPHICS}

The United States Census Office recently attempted to standardize the classification of race and ethnicity. Under the new categorization system, participants are initially asked whether they are of Hispanic or Latino origin, and then asked about race. Table 7 shows that anglers were categorized
into Hispanic/Latino/Spanish, White (non-Hispanic), Black, Asian, and other (including respondents of mixed ethnic background).

Table 7 also shows that, based on the new categorization system, Hispanic, Latino, or Spanish were represented more than any other race (36.9\%). One-fourth of the anglers ( \(N=167,24.1 \%\) and \(\mathrm{N}=165,23.8 \%\) respectively) identified themselves as White or Asian.
\begin{tabular}{|lcc|}
\hline Table 7. Angler ethnicity (N=693)(Q26). & & \\
\hline Ethnicity & Count & Percentage \\
\hline Hispanic, Latino, or Spanish & 256 & \(36.9 \%\) \\
White (non-Hispanic) & 167 & \(24.1 \%\) \\
Asian & 165 & \(23.8 \%\) \\
Black & 43 & \(6.2 \%\) \\
Other (including individuals of Mixed ethnic background) & 62 & \(8.9 \%\) \\
\hline Totals & 693 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. TWENTY-ONE RESPONDENTS DECLINED TO ANSWER AND WERE INCLUDED IN OTHER IF ETHNICITY WAS NOT READILY APPARENT.

Table 8 shows the specific ethnic breakdown of respondents who identified themselves as Asian. The follow-up question asked the Asian respondents to narrowly identify their ethnicity, i.e., Cambodian, Chinese, Filipino, Japanese, Korean, Pacific Islander, and Vietnamese. Among those who identified themselves as Asian, \(41 \%(N=63)\) specified their ethnicity as Filipino. Among the nine anglers who identified their race as Pacific Islander, four were Samoan, one was Native Hawaiian, one as other, and three refused to answer the question.
\begin{tabular}{|lcc|}
\hline Table 8. Ełhnic breakdown for anglers identified as Asian (N=154)(Q26). & \\
\hline Ethnicity & Count & Percentage \\
\hline Filipino & 63 & \(40.9 \%\) \\
Japanese & 24 & \(15.6 \%\) \\
Korean & 19 & \(12.3 \%\) \\
Chinese & 16 & \(10.5 \%\) \\
Vietnamese & 14 & \(9.1 \%\) \\
Other & 18 & \(11.7 \%\) \\
\hline Totals & 154 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. This table excludes 11 Asian anglers who declined to respond.

\subsection*{5.4.3. SURVEY LINGUISTIC DEMOGRAPHICS}

Table 9 shows that 93\% (644 out of 693) of the interviews were conducted in English. Approximately \(7 \%\) of the interviews were conducted in Spanish ( \(\mathrm{N}=48\) ) and a single interview was conducted in Vietnamese ( \(\mathrm{N}=1\) ).

Table 9. Language used during interview ( \(\mathbf{N}=693\) ).
\begin{tabular}{|lcc|}
\hline Language & Interviews & Percentage \\
\hline English & 644 & \(93.0 \%\) \\
Spanish & 48 & \(6.9 \%\) \\
Vietnamese & 1 & \(0.1 \%\) \\
\hline Totals & 693 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. 11 respondents declined to answer.

\subsection*{5.4.4. ANGLER ETHNICITIES VS. LA COUNTY POPULATION ETHNICITIES}

Figure 3 compares the ethnic distribution of anglers and their corresponding distribution in the general population of Los Angeles County (based on the 2010 US Census for Los Angeles County, updated in 2012). Hispanic, White, and Black angler populations are lower than their corresponding population in Los Angeles County. The difference between the percent Hispanics in the angler population and the percent Hispanics in the Los Angeles County population is higher than among the White and Black ethnic groups. Asians, on the other hand, comprise a higher percentage among anglers compared to their percentage among the Los Angeles County population. These results suggest that fishing is a more prevalent activity among Asians than among other ethnic groups.

Figure 3. Comparison of angler race in angler population vs. L.A. county population ( \(\mathrm{N}=693\) ).


\subsection*{5.4.5. ANGLER ETHNICITY BY FISHING MODE}

Figure 4 shows the ethnic distribution of anglers in the different fishing modes. The data demonstrate that Hispanic, Asian, and Black anglers are the most frequent anglers at the Piers or Jetties. Approximately \(66 \%\) of all anglers at piers or jetties are Hispanic, \(56 \%\) are Asian, \(42 \%\) are Black, and \(34 \%\) are a different or mixed ethnic group. White anglers largely fish from private and charter boats. Among the different modes, charter boats have the least variance, ranging from a low of \(21 \%\) to a high of \(34 \%\).

Figure 4. Angler ethnicity distribution (during survey administration) by fishing mode ( \(\mathrm{N}=693\) ).


\subsection*{5.4.6. ANGLER ETHNICITY BY SEASON}

Figure 5 shows that the proportion of White anglers and Black anglers surveyed in the summer months was higher than in non-summer months, i.e., \(58 \%\) versus \(42 \%\) and \(56 \%\) versus \(44 \%\), respectively. There was little difference in the proportion of Hispanic anglers interviewed during the summer and non-summer months, i.e., \(49 \%\) versus \(51 \%\), respectively. The proportion of Asian anglers surveyed in the summer months ( \(45 \%\) ) was lower than non-summer months (55\%). The surveys among other ethnic groups, including those of mixed ethnic background, were significantly reduced in the non-summer months ( \(29 \%\) ) compared to the summer months ( \(71 \%\) ).

Figure 5. Angler ethnicity by summer and non-summer months ( \(\mathrm{N}=693\) ).


\subsection*{5.5. FISHING BEHAVIORS AND CHARACTERISTICS}

\subsection*{5.5.1. NUMBER OF YEARS FISHING}

Figure 6 shows the level of fishing experience among anglers. The answers ranged from less than a year to 70 years. The mean number of years was 12 , and the median was 5 . The Study indicates that a high percentage of the anglers surveyed were relatively new to fishing.

Figure 6. Percent of anglers with at least a given year's experience fishing in the Study Area ( \(\mathrm{N}=693\) ).


\subsection*{5.5.2. MODE OF FISHING OVER THE PAST YEAR}

Figure 7 shows the number of anglers in each fishing mode over the past year within the study region. Anglers were encouraged to select all that apply. Nearly all anglers, (95\%) had fished at either piers or jetties within the last year. Beach/intertidal zone survey sites were the least common at \(33 \%\). Other responses, reported by \(2 \%\) of anglers, included "fishing from a kayak" and "scuba fishing".

Figure 7. Percent of anglers who fish at various fishing modes over the course of the year ( \(\mathbf{N}=693\) ).


NOTE. Respondents were asked to choose all that apply. Percentage may sum to greater than 100\%.
Anglers were also asked to report where in the study region they had fished in the past year (including the current trip). The mode of interview was removed from the mode in the past year responses (Q2) to display other angler modes. Anglers were encouraged to select all that apply, therefore, percentages may sum to greater than \(100 \%\).

Table 10 shows the fishing mode at the time of the interview and the percent of time that the angler had used other fishing modes within the past year. Anglers surveyed reported fishing across several modes during the past survey year. As an example, among the anglers interviewed at a pier or jetty, \(25.4 \%\) reported having also fished from a private boat in the last year, \(25.7 \%\) from a charter boat, and \(27.8 \%\) from a beach or intertidal zone. Table 10 also shows that more of the anglers at beach/intertidal sites also reported fishing from piers or jetties compared to anglers at private or charter boats ( \(\mathrm{p}<0.05\) ).

Table 10. Mode of fishing in the past year by mode at time of interview ( \(\mathbf{N}=\mathbf{6 9 3}\) )(Q2).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|c|}{Mode at time of interview} \\
\hline & & Pier or Jetty & Private Boat & Charter Boat & Beach or Intertidal zone \\
\hline \multicolumn{2}{|l|}{Mode in past year (Q2)} & \(N=338\) & \(N=139\) & \(N=189\) & \(\mathrm{N}=27\) \\
\hline \multirow[b]{2}{*}{Pier/Jetty} & Interview Count & - & 55 & 71 & 17 \\
\hline & \% within Mode & - & 39.6\% & 37.6\% & 63.0\% \\
\hline \multirow{2}{*}{Private Boat} & Interview Count & 86 & - & 60 & 11 \\
\hline & \% within Mode & 25.4\% & - & 31.7\% & 40.7\% \\
\hline \multirow{2}{*}{Charter Boat} & Interview Count & 87 & 71 & - & 8 \\
\hline & \% within Mode & 25.7\% & 51.1\% & - & 29.6\% \\
\hline \multirow[t]{2}{*}{Beach or Intertidal Zone} & Interview Count & 94 & 55 & 45 & - \\
\hline & \% within Mode & 27.8\% & 39.6\% & 23.8\% & - \\
\hline
\end{tabular}

NOTE. Respondents could choose more than one mode in the past year. Results may sum to more than 100\%.

\subsection*{5.5.3. ANGLER CATCH OVERVIEW}

All anglers were interviewed about the species of fish they catch. Thirty-four percent of anglers \((\mathrm{N}=235)\) reported catching fish on the day they were surveyed. \(57 \%(\mathrm{~N}=125)\) allowed surveyors to identify their catch. Approximately \(25 \%\) ( \(\mathrm{N}=56\) ) of the 235 anglers who reported catching fish stated that they could not have their fish identified because they had already thrown back their catch. There was no follow-up with anglers about the species and quantity of fish that were no longer in their bucket (i.e., already thrown back, filleted, or given away).

Table 11 shows the types of fish in anglers' buckets for the four fishing modes. A total of 1,118 fish were observed across 125 angler buckets. The mean number of fish for all anglers was 1.61 (SD \(=8.84\) ) and the mean number of fish for anglers with fish in their buckets was 9.01 (SD=19.309). Table 11 records the 35 different species of fish or invertebrates that were observed in angler buckets. Chub mackerel, Pacific sardines, and perch were the most common species observed. Table 13 shows the types of fish identified in buckets of anglers for each fishing mode. Anglers on piers or jetties ( \(\mathrm{n}=75\) ) were identified with the most fish in their buckets, followed by anglers in charter boats ( \(n=24\) ), in private boats ( \(n=12\) ), and beach or intertidal zones ( \(n=2\) ).

Table 11. Percentage of anglers with specific types of fish by fishing mode ( \(\mathrm{N}=125\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Common Name & \multicolumn{2}{|l|}{Scientific Name} & Pier or Jetty & \begin{tabular}{l}
Private \\
Boat
\end{tabular} & \multicolumn{3}{|l|}{\begin{tabular}{rrr} 
& \begin{tabular}{l} 
Beach or \\
Charter \\
Intertida
\end{tabular} & \\
Boat & 1 & Total
\end{tabular}} \\
\hline & & & ( \(\mathrm{N}=75\) ) & ( \(\mathrm{N}=12\) ) & ( \(\mathrm{N}=24\) ) & ( \(\mathrm{N}=2\) ) & 113 \\
\hline white croaker \({ }^{\text {DNC }}\) & Genyonemus lineatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
6 \\
8.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
50.0 \%
\end{array}
\] & 8 \\
\hline barred sand bass DNC & Paralabrax nebulifer & Angler Count: \% within Mode: & 4
\(5.3 \%\) & 3 & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & 0
\(0.0 \%\) & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline black croaker \({ }^{\text {DNC }}\) & Cheilotrema saturnum & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & 0 \\
\hline topsmelt DNC & Atherinops affinis & Angler Count: \% within Mode: & \[
\begin{array}{r}
9 \\
12.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 12 \\
\hline Pacific barracuda DNC & Sphryraena argentea & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
3 \\
12.5 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline barred surfperch & Amphistichus argenteus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline sargo & Anisotremus davidsonii & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline jacksmelt & Atherinopsis californiensis & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
6.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 5 \\
\hline shark & Chondrichthyes, unid. & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline blacksmith & Chromis punctipinnis & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline sanddab & Citharichthys spp. & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
3 \\
25.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline black perch & Embiotoca jacksoni & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline surfperch, unspecified & Embiotocidae & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline opaleye perch & Girella nigricans & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline zebra perch & Hermosilla azurea & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline walleye surfperch & Hyperprosopon argenteum & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline California corbina & Menticirrhus undulatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline lingcod & Ophiodon elongatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline senorita & Oxyiulis californica & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline kelp bass & Paralabrax clathratus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline California halibut & Paralichthys californicus & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 4 \\
\hline ray, unspecified & Rajiformes, unid. & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline shovelnose guitarfish & Rhinobatos productus & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline spotfin croaker & Roncador stearnsii & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline
\end{tabular}

Palos Verdes Shelf Seafood Consumption Study
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pacific sardine & Sardinops sagax & Angler Count: \% within Mode: & \[
\begin{array}{r}
26 \\
34.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 26 \\
\hline California scorpionfish & Scorpaena guttata & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
8 \\
33.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 11 \\
\hline chilipepper rockfish & Sebastes goodei & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline vermilion rockfish & Sebastes miniatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline California sheephead & Semicossyphus pulcher & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline queenfish & Seriphus politus & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline California lizardfish & Synodus lucioceps & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
6.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 6 \\
\hline yellow croaker & Umbrina roncador & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline bass, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
6 \\
25.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 8 \\
\hline chub mackerel & & Angler Count: \% within Mode: & \[
\begin{array}{r}
26 \\
34.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 27 \\
\hline perch, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
15 \\
20.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
50.0 \%
\end{array}
\] & 17 \\
\hline rockfish, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
6 \\
25.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 9 \\
\hline
\end{tabular}

NOTE. There are 12 missing cases.
Figure 8 is a graphical presentation of fish caught by anglers fishing at piers or jetties. Club mackerel ( \(35 \%\) ), Pacific sardine ( \(35 \%\) ), and perch ( \(20 \%\) ) were the three fish species most commonly caught, and topsmelt ( \(12 \%\) ), white croaker ( \(8 \%\) ), and barred sand bass ( \(5 \%\) ) were the DNC fish identified in angler's buckets.

Figure 8. Angler catch at pier or jetty.


Figure 9 is a graphical presentation of fish caught by anglers fishing on private boats. Barred sand bass \({ }^{\text {DNC }}(25 \%)\) and sanddab ( \(25 \%\) ) were the most commonly caught. Topsmelt \({ }^{\text {DNC }}\), California scorpionfish, kelp bass, and rockfish were all caught at a rate of \(17 \%\).

Figure 9. Angler catch by private boat.


Figure 10 shows that anglers fishing on charter boats most commonly caught California scorpionfish ( \(33 \%\) ), bass ( \(25 \%\) ), and rockfish ( \(25 \%\) ). Pacific barracuda ( \(13 \%\) ), topsmelt ( \(4 \%\) ), and barred sand bass (4\%) were DNC fish identified in angler's buckets.

Figure 10. Angler catch by charter boat.


\subsection*{5.5.4. ANGLER CATCH BY SEASON}

Table 12 shows that the most common species observed in anglers' buckets were chub mackerel during the non-summer months and Pacific sardine during summer months. Nearly all observed fish species demonstrated variability from non-summer to summer months. The largest degree of variability was observed in topsmelt and barred sandbass. The presence of topsmelt in anglers' buckets decreased by \(13 \%\) from non-summer to summer months, while barred sandbass catches increased by nearly \(8 \%\) from non-summer to summer months. Table 12, below, displays seasonal variation of specific fish identified in anglers' buckets.

Table 12. Number of anglers with specific fish species by season ( \(\mathrm{N}=113\) ).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Common Name & \multicolumn{2}{|l|}{Scientific Name} & Non-Summer & Summer & Total \\
\hline & & & ( \(\mathrm{N}=71\) ) & ( \(\mathrm{N}=42\) ) & 113 \\
\hline white croaker \({ }^{\text {DNC }}\) & Genyonemus lineatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
6 \\
8.5 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
4.8 \%
\end{array}
\] & 8 \\
\hline barred sand bass \({ }^{\text {DNC }}\) & Paralabrax nebulifer & Angler Count: \% within Mode: & \[
\begin{array}{r}
3 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
5 \\
11.9 \%
\end{array}
\] & 8 \\
\hline black croaker \({ }^{\text {DNC }}\) & Cheilotrema saturnum & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 0 \\
\hline
\end{tabular}
\(\left.\begin{array}{|lllrr|r|}\hline \text { topsmelt DNC } & \text { Atherinops affinis } & \text { Angler Count: } & 11 & 1 & 12 \\ & & \text { \% within Mode: } & 15.5 \% & 2.4 \%\end{array}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \% within Mode: & 25.4\% & 19.0\% & \\
\hline California scorpionfish & Scorpaena guttata & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
7.0 \%
\end{array}
\] & \[
\begin{array}{r}
6 \\
14.3 \%
\end{array}
\] & 11 \\
\hline chilipepper rockfish & Sebastes goodei & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.4 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline vermilion rockfish & Sebastes miniatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
4.8 \%
\end{array}
\] & 2 \\
\hline California sheephead & Semicossyphus pulcher & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.4 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
2.4 \%
\end{array}
\] & 2 \\
\hline queenfish & Seriphus politus & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.8 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline California lizardfish & Synodus lucioceps & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
7.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
2.4 \%
\end{array}
\] & 6 \\
\hline yellow croaker & Umbrina roncador & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.8 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline bass, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
3 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
5 \\
11.9 \%
\end{array}
\] & 8 \\
\hline chub mackerel & & Angler Count: \% within Mode: & \[
\begin{array}{r}
20 \\
28.2 \%
\end{array}
\] & \[
\begin{array}{r}
7 \\
16.7 \%
\end{array}
\] & 27 \\
\hline perch unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
11 \\
15.5 \%
\end{array}
\] & \[
\begin{array}{r}
6 \\
14.3 \%
\end{array}
\] & 17 \\
\hline rock fish unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
7.0 \%
\end{array}
\] & \[
\begin{array}{r}
4 \\
9.5 \%
\end{array}
\] & 9 \\
\hline sand bass unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
3 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
5 \\
11.9 \% \\
\hline
\end{array}
\] & 8 \\
\hline
\end{tabular}

Figure 11 is a graphical presentation of fish species caught in the summer and non-summer months. Except for the California scorpionfish, barred sand bass (DNC fish), bass (unspecified), and sand bass (unspecified), all other types of fish were more commonly caught in the non-summer months rather than in the summer months. The difference in observed catch between summer and nonsummer months for California scorpionfish, barred sand bass, bass (unspecified), and sand bass (unspecified) was small. White croaker and topsmelt were DNC fish that showed the most significant variance between non-summer and summer months.

Figure 11. Number of anglers with specific fish species by season.


\subsection*{5.5.5. SPECIES IDENTIFICATION}

Upon examination of fish species in anglers' buckets, surveyors asked respondents for the name of each fish. Surveyors recorded angler responses to determine the common names (or mistakenly identified names) for each fish used by anglers.

Table 13 shows the common names used by anglers to identify fish they had caught and the corresponding number of anglers. DNC fish are identified in the table with a super script.

Table 13. Angler common names for identified fish species ( \(\mathbf{N}=125\) ).
\begin{tabular}{|c|c|c|c|}
\hline Common Name & Scientific Name & Angler Common Names & \# Anglers \\
\hline white croaker DNC & Genyonemus lineatus & queen fish corbina & 8 \\
\hline topsmelt DNC & Atherinops affinis & topsmelt jacksmelt & 12 \\
\hline barred sand bass DNC & Paralabrax nebulifer & barred sand bass calico bass & 8 \\
\hline Pacific barracuda \({ }^{\text {DNC }}\) & Sphryraena argentea & barracuda & 3 \\
\hline barred surfperch & Amphistichus argenteus & buttermouth perch & 1 \\
\hline sargo & Anisotremus davidsonii & sargo & 2 \\
\hline jacksmelt & Atherinopsis californiensis & jacksmelt topsmelt & 5 \\
\hline shark & Chondrichthyes, unid. & & 1 \\
\hline blacksmith & Chromis punctipinnis & blacksmith & 1 \\
\hline sanddab & Citharichthys spp. & sand dab & 3 \\
\hline black perch & Embiotoca jacksoni & black perch & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline surfperch, unspecified & Embiotocidae & surfperch & 1 \\
\hline opaleye perch & Girella nigricans & opal eye & 2 \\
\hline walleye surfperch & Hyperprosopon argenteum & no answer & 1 \\
\hline California corbina & Menticirrhus undulatus & no answer & 1 \\
\hline lingcod & Ophiodon elongatus & lingcod & 1 \\
\hline senorita & Oxyjulis californica & senorita & 1 \\
\hline kelp bass & Paralabrax clathratus & calico bass white croaker & 3 \\
\hline California halibut & Paralichthys californicus & halibut & 4 \\
\hline ray, unspecified & Rajiformes, unid. & skate thornback & 1 \\
\hline shovelnose guitarfish & Rhinobatos productus & guitar fish & 1 \\
\hline spotfin croaker & Roncador stearnsii & yellow croaker & 2 \\
\hline Pacific sardine & Sardinops sagax & sardine & 26 \\
\hline California scorpionfish & Scorpaena guttata & sculpin scorpion scorpion fish & 11 \\
\hline chilipepper rockfish & Sebastes goodei & & 1 \\
\hline vermilion rockfish & Sebastes miniatus & red snapper & 2 \\
\hline California sheephead & Semicossyphus pulcher & & 2 \\
\hline queenfish & Seriphus politus & & 2 \\
\hline California lizardfish & Synodus lucioceps & topsmelt & 6 \\
\hline yellow croaker & Umbrinaroncador & yellow croaker & 2 \\
\hline Mackerel & & mackerel topsmelt perch & 27 \\
\hline perch, unspecified & & perch & 17 \\
\hline rock fish, unspecified & & rock fish & 9 \\
\hline bass unspecified & & sand bass & 8 \\
\hline smelt, unspecified & & & 1 \\
\hline
\end{tabular}

NOTE. All 125 anglers with fish in their bucket were asked what they called the fish but answers were not required.

\subsection*{5.6. FISH CONSUMPTION PATTERNS}

\subsection*{5.6.1. OVERALL CONSUMPTION PATTERNS}

All anglers were asked if they had consumed fish caught from the study region within the past four weeks (Q3). Among the 693 anglers interviewed, 270 (39\%) reported consuming fish at an average of 4.27 times ( \(\mathrm{SD}=4.96\) ) in the last four weeks. Frequencies of fish consumption ranged from one to 31 times, with a median of three and a mode of two (Q4).

All respondents were asked to identify their approximate typical serving size based on a 150 gram fish fillet model that was shown. Anglers reported consuming an average amount of 0.83
fillet, which is equivalent to approximately 124 grams per sitting ( \(S D=0.44\) ). \(49 \%\) of the respondents reported consuming a portion approximately half the fillet model per meal, \(44 \%\) reported consuming a portion equal to the size of a fillet per meal, \(6 \%\) reported consuming twice the size of the fillet model per meal, and \(1 \%\) reported consuming portions three or more times larger than the 150 -gram fish fillet model per meal (Q6).

Overall, anglers who reported eating fish in the past four weeks were:
- Older ( \(M=46.95\) years, \(S D=15.62\) ) compared to those who reported not eating fish ( \(M=41.50, S D=14.06, t=5.46, p<0.001\) );
- More likely to be Asian (48\% reported eating fish caught in the study region), Black (45\%), compared to White ( \(35 \%\) ), or Hispanic/Latino (34\%). Chi-square \(=11.03, p=0.026, d f=4\);
- Fishing from a charter boat (45\%), private boat (44\%), or beach or intertidal zone (41\%), compared to a pier or jetty ( \(34 \%\) ). Chi-square \(=8.97, p=.004, d f=3\);
- Familiar with health advisory warnings related to fish caught in the study region (Chi-square = 9.58, \(p=.002, \mathrm{~N}=693, \mathrm{phi}=0.12\) );
- More experienced anglers ( \(M=14.95\) years, \(S D=15.22\) ) than those who had not eaten fish ( \(M=10.15\) years, \(S D=13.30, t=4.37, p<0.001\) ); and
- Equally distributed between male and female groups (males \(39 \%\) compared to \(35 \%\) of females).

Although anglers who consume fish shared certain traits, those traits were not necessarily predictors of consumption behavior. A regression analysis was performed to identify variables that were significantly related to the amount of seafood consumed in the study region. The predictor variables were age, gender, race, fishing mode, awareness of warning signs, and years spent fishing in the study region. The results indicated none of these variables significantly influenced the amount of fish consumed in the past four weeks.

\subsection*{5.6.2. FISH CONSUMPTION BY SPECIES}

All anglers with fish in their buckets were asked how they intend to use the fish. This information was applied to determine consumption frequency by species. Table 14 shows the number of anglers who caught each type of fish and the percentage of caught fish that were eaten, given away, thrown back, or used as bait. The most highly consumed fish were topsmeltDNC (19.2\%), mackerel (27.3\%), Pacific sardine ( \(21.2 \%\) ), and perch (19.2\%). White croaker ( \(10.1 \%\) ) and Pacific barracuda ( \(5.1 \%\) ) were also DNC fish that were reported for consumption. Note that the percentages are calculated for the fate category across all fish species, therefore, these consumption rates are skewed higher for the fish that were more often caught. The number of anglers who caught a particular DNC fish and who responded to this question is very low. Therefore, definite conclusions cannot be drawn from these data.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{Fate of Fish} \\
\hline \multicolumn{2}{|l|}{} & Eat & Give Away & Throw Back & Bait & Other \\
\hline \multicolumn{2}{|l|}{Species} & ( \(\mathrm{N}=99\) ) & ( \(\mathrm{N}=25\) ) & ( \(\mathrm{N}=12\) ) & \((\mathrm{N}=34)\) & ( \(\mathrm{N}=2\) ) \\
\hline \multirow[t]{2}{*}{topsmelt DNC} & Angler Count: & 19 & 7 & 2 & 6 & 0 \\
\hline & \% by Fate: & 19.2\% & 28.0\% & 16.7\% & 17.6\% & 0.0\% \\
\hline \multirow[t]{2}{*}{white croaker DNC} & Angler Count & 10 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 10.1\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{barred sand bass \({ }^{\text {DNC }}\)} & Angler Count: & 0 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{black croaker DNC} & Angler Count: & 0 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{Pacific barracuda \({ }^{\text {DNC }}\)} & Angler Count: & 5 & 2 & 0 & 0 & 0 \\
\hline & \% by Fate: & 5.1\% & 8.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{barred surfperch} & Angler Count: & 0 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{sargo} & Angler Count: & 2 & 4 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 16.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{iacksmelt} & Angler Count: & 5 & 0 & 0 & 4 & 0 \\
\hline & \% by Fate: & 5.1\% & 0.0\% & 0.0\% & 11.8\% & 0.0\% \\
\hline \multirow[t]{2}{*}{shark} & Angler Count: & 1 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 1.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{blacksmith} & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{sanddab, unidentified} & Angler Count: & 3 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{black perch} & Angler Count: & 1 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 1.0\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{surfperch, unidentified} & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{opaleye perch} & Angler Count: & 2 & 3 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 12.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{zebra perch} & Angler Count: & 0 & 1 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 4.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{walleye surfperch} & Angler Count: & 0 & 0 & 0 & 1 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 2.9\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California corbina} & Angler Count: & 0 & 4 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 16.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{lingcod} & Angler Count: & 3 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline senorita & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{kelp bass} & Angler Count: & 6 & 2 & 1 & 0 & 0 \\
\hline & \% by Fate: & 6.1\% & 8.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California halibut} & Angler Count: & 4 & 2 & 2 & 0 & 0 \\
\hline & \% by Fate: & 4.0\% & 8.0\% & 16.7\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{ray, unidentified} & Angler Count: & 2 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{shovelnose guitarfish} & Angler Count: & 0 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{spotfin croaker} & Angler Count: & 3 & 4 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 16.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{Pacific sardine} & Angler Count: & 21 & 4 & 0 & 16 & 0 \\
\hline & \% by Fate: & 21.2\% & 16.0\% & 0.0\% & 47.1\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California scorpionfish} & Angler Count: & 14 & 3 & 1 & 2 & 0 \\
\hline & \% by Fate: & 14.1\% & 12.0\% & 8.3\% & 5.9\% & 0.0\% \\
\hline \multirow[t]{2}{*}{chilipepper rockfish} & Angler Count: & 2 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{vermilion rockfish} & Angler Count: & 4 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 4.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California sheephead} & Angler Count: & 3 & 1 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 4.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{queenfish} & Angler Count: & 0 & 1 & 2 & 0 & 1 \\
\hline & \% by Fate: & 0.0\% & 4.0\% & 16.7\% & 0.0\% & 50.0\% \\
\hline \multirow[t]{2}{*}{California lizardfish} & Angler Count: & 6 & 2 & 2 & 3 & 0 \\
\hline & \% by Fate: & 6.1\% & 8.0\% & 16.7\% & 8.8\% & 0.0\% \\
\hline \multirow[t]{2}{*}{yellow croaker} & Angler Count: & 3 & 5 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 20.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{bass, unspecified} & Angler Count: & 12 & 2 & 3 & 0 & 0 \\
\hline & \% by Fate: & 12.1\% & 8.0\% & 25.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{mackerel unspecified} & Angler Count: & 27 & 1 & 1 & 16 & 0 \\
\hline & \% by Fate: & 27.3\% & 4.0\% & 8.3\% & 47.1\% & 0.0\% \\
\hline \multirow[t]{2}{*}{perch unspecified} & Angler Count: & 19 & 3 & 3 & 7 & 1 \\
\hline & \% by Fate: & 19.2\% & 12.0\% & 25.0\% & 20.6\% & 50.0\% \\
\hline \multirow[t]{2}{*}{rock fish unspecified} & Angler Count: & 8 & 1 & 1 & 2 & 0 \\
\hline & \% by Fate: & 8.1\% & 4.0\% & 8.3\% & 5.9\% & 0.0\% \\
\hline
\end{tabular}

NOTE. \(N=109\) is the number of unique responses. Not all anglers responded.

\subsection*{5.6.3. FISH CONSUMPTION BY FISH PART}

Anglers who consumed fish over the past four weeks were asked what parts of the fish they usually consumed (Q5). This information is of interest because contaminant levels are significantly higher in the skin and guts of the fish due to accumulation of contaminants in fatty tissue. Consequently,
preparation methods that use the skin or guts present a greater health risk to the angler. Respondents were encouraged to select all preparation methods they have used in the past four weeks. Allowing multiple responses increased the likelihood of respondents reporting "inferior" preparation methods rather than biasing respondents to only selecting Steaks or Fillets without Skin.

Figure 12 shows that \(62 \%\) of anglers reported consuming fish as steaks or fillet without skin, the most favored behavior. Only \(4 \%\) reported consuming whole fish including guts, the least protective preparation method.

Figure 12. Percent of anglers who consume fish who also report using a given preparation method ( \(\mathrm{N}=\mathbf{2 7 0}\) ).


NOTE. Respondents were asked to choose all that apply. Percentage may sum to greater than 100\%.

\subsection*{5.6.4. FISH CONSUMPTION BY PART AND ETHNICITY}

Table 15 shows how consumption behaviors varied across ethnicities. In general, anglers of all ethnic backgrounds preferred consuming fish as steaks or fillets without skin. Asian anglers also preferred consuming fish as steaks or fillets without skin; however, they were also two to three times more likely to prepare fish whole compared to other ethnicities.

Table 15. Fish consumption by part and angler ethnicity ( \(\mathrm{N}=270\) )(Q19).
\begin{tabular}{|lrrrrrr|r|}
\hline Parts consumed & & Hispanic & White & Asian & Black & Other & All \\
\hline Steak or fillets & Angler Count: & 53 & 51 & 39 & 18 & 5 & 166 \\
without skin & \% within Ethnicity: & \(60.2 \%\) & \(77.3 \%\) & \(47.0 \%\) & \(81.8 \%\) & \(100.0 \%\) & \(61.5 \%\) \\
Steak or fillets & Angler Count: & 24 & 14 & 16 & 2 & 0 & 56 \\
with skin & \% within Ethnicity: & \(27.3 \%\) & \(21.2 \%\) & \(19.3 \%\) & \(9.1 \%\) & \(0.0 \%\) & \(20.7 \%\) \\
Whole without guts & Angler Count: & 15 & 6 & 31 & 4 & 0 & 56 \\
& \% within Ethnicity: & \(17.0 \%\) & \(9.1 \%\) & \(37.3 \%\) & \(18.2 \%\) & \(0.0 \%\) & \(20.7 \%\) \\
Whole with guts & Angler Count: & 3 & 1 & 8 & 0 & 0 & 12 \\
& \% within Ethnicity: & \(3.4 \%\) & \(1.5 \%\) & \(9.6 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(4.4 \%\) \\
Other & Angler Count: & 1 & 0 & 2 & 0 & 0 & 3 \\
& \% within Ethnicity: & \(1.1 \%\) & \(0.0 \%\) & \(2.4 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(1.1 \%\) \\
\hline
\end{tabular}

NOTE. Respondents were encouraged to choose all that apply. Percentages may sum to greater than \(100 \%\).

\subsection*{5.6.5. FISH CONSUMPTION BY MODE}

Table 16 shows that there was a small degree of variability in fish consumption by anglers across fishing modes. Anglers fishing from piers or jetties were the least likely to consume their catch (34\%) but the most likely to catch fish (38\%). Private boats were the most likely to consume their catch ( \(45 \%\) ) but the least likely to catch fish.

Table 16. Reported consumption among anglers in the Study Area ( \(\mathrm{N}=693\) )(Q3 and Q7).
\begin{tabular}{|lcccc|c|}
\hline Survey question & \begin{tabular}{c} 
Pier or \\
Jetty
\end{tabular} & \begin{tabular}{c} 
Charter \\
Boat
\end{tabular} & \begin{tabular}{c} 
Private \\
Boat
\end{tabular} & \begin{tabular}{c} 
Beach or \\
Intertidal Zone
\end{tabular} & \begin{tabular}{c} 
Full \\
Sample
\end{tabular} \\
\hline & \((\mathrm{N}=338)\) & \((\mathrm{N}=189)\) & \((\mathrm{N}=139)\) & \((\mathrm{N}=27)\) & \((\mathrm{N}=693)\) \\
\hline \begin{tabular}{l} 
During the past four weeks, have you \\
eaten fish caught in this region (shown \\
map)? (Q3) [Percent reporting "Yes"]
\end{tabular} & \(34 \%\) & \(44 \%\) & \(45 \%\) & \(41 \%\) & \(39 \%\) \\
\begin{tabular}{l} 
Have you caught any fish today? (Q7) \\
[Percent reporting "Yes"]
\end{tabular} & \(38 \%\) & \(34 \%\) & \(23 \%\) & \(37 \%\) & \(34 \%\) \\
\hline
\end{tabular}

\subsection*{5.6.6. QUANTITATIVE MEASURE OF FISH CONSUMPTION RATES}

Table 17 shows consumption rates by ethnicity for angler consumers who reported consuming fish within the four weeks prior to being surveyed and anglers who had not consumed fish in the four weeks prior to being surveyed. The mean fish consumption rate of angler consumers from all ethnic backgrounds is 18.55 grams per individual per day ( \(g / i n d / d a y\) ) with a median of 10.71 \(\mathrm{g} / \mathrm{ind} / \mathrm{day}\). All anglers from all ethnic background have a mean fish consumption rate of 6.88 \(\mathrm{g} / \mathrm{ind} /\) day. A comparison of the \(95 \%\) UCLs or the upper confidence interval on the mean fish consumption rate for a measurement of Central Tendency or average exposure shows that angler consumers represent the higher or more conservative fish consumption rate ( \(21.72 \mathrm{~g} / \mathrm{ind} / \mathrm{day}\) ). It is
also noted that Black anglers have the highest \(95 \%\) UCL in fish consumption rate for both groups of anglers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Consumption Rate (g/ind./day)} \\
\hline & & ngler Cons & sumers & Q3, Q6) & & & & lers (al & & \\
\hline Ethnicity & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline Hispanic & 80 & 16.41 & 20.69 & 10.71 & 41.79 & 258 & 5.09 & 6.76 & 0.00 & 16.07 \\
\hline Asian & 76 & 20.76 & 26.36 & 10.71 & 64.29 & 162 & 9.74 & 12.95 & 0.00 & 25.18 \\
\hline White & 54 & 19.25 & 29.31 & 9.38 & 42.86 & 164 & 6.34 & 9.86 & 0.00 & 16.07 \\
\hline Black & 17 & 23.00 & 34.40 & 16.07 & 60.00 & 44 & 8.88 & 13.81 & 0.00 & 32.14 \\
\hline Other & 22 & 12.78 & 20.98 & 6.70 & 36.43 & 51 & 5.51 & 9.72 & 0.00 & 16.07 \\
\hline Total & \(270^{\circ}\) & 18.55 & 21.72 & 10.71 & 42.86 & \(693{ }^{\text {b }}\) & 6.88 & 8.47 & 0.00 & 21.43 \\
\hline
\end{tabular}

NOTE: U.C.L. = Upper Confidence Limit (95\%); Md = Median (50\%); U.D. = Upper Decile (90\%); *Angler-Consumers ARE DEFINED AS ANGLERS WHO REPORTED CONSUMING FISH IN THE 4 WEEKS PRIOR TO BEING SURVEYED - CONSISTENT WITH THE 1994 STUDY METHOD; **ANGLERS (ALL) ASSUMES THAT ANGLERS WHO HAD NOT CONSUMED A FISH IN THE FOUR WEEKS PRIOR TO BEING SURVEYED ARE NOT CONSUMERS OF FISH - THIS CALCULATION UNDERREPORTS ACTUAL CONSUMPTION RATES; \({ }^{\text {A }}\) THERE Were 21 instances of missing data; \({ }^{\text {B }}\) THERE WERE 14 instances of missing data; U.C.L. calculated using a BOOTSTRAPPING TECHNIQUE APPLIED TO THE MEAN.

Figure 13 is a histogram of reported consumption rates of anglers who consume fish from the study region. The responses were grouped into consumption rate increments of \(10 \mathrm{~g} / \mathrm{ind} / \mathrm{day}\). As shown in the histogram, more than \(90 \%\) of the anglers consumed fish at a rate of \(20 \mathrm{~g} / \mathrm{ind} / \mathrm{day}\). This value is fairly consistent with the data shown in Table 17 wherein the more conservative or higher-end range ( \(95 \% \mathrm{UCL}\) ) of the mean fish consumption rate was \(21.72 \mathrm{~g} / \mathrm{ind} / \mathrm{day}\). It is noted that the human health risk evaluations conducted in 2007 assumed a higher-end reasonable maximum exposure (RME) of \(107 \mathrm{~g} / \mathrm{ind} /\) day (all anglers) and \(116 \mathrm{~g} / \mathrm{ind} /\) day (Asian anglers), which are more conservative assumptions. RME values are used for determining the potential environmental exposures to ethnic subgroups from higher seafood consumption rates. The highest UCL reported for any ethnic group on Table 17 is substantially below the RME determined by EPA in 2007.

Figure 13: Histogram - Overall consumption rate among 270 anglers who reported consuming fish from the study region in the past four weeks ( \(\mathrm{N}=270\) )


\subsection*{5.7. DNC FISH CONSUMPTION PATTERNS}

This section focuses solely on intended consumption patterns of DNC fish. Information from anglers was gathered either by identifying DNC fish in their buckets or by showing pictures of DNC fish to anglers and asking them what they would do if they caught DNC fish. A review of the collected data indicated that the sample size was too limited to have statistical significance. These analyses are included in the appendix.

\subsection*{5.7.1. OVERALL DNC CONSUMPTION PATTERNS}

In addition to assessing overall fish consumption behaviors, the Study sought to better understand consumption patterns of the five DNC fish. 98 anglers (14\%) reported eating one or more of the five DNC fish. Compared to the general angler population, respondents who reported consuming these fish had been fishing in the Study region longer ( \(M=15.29, S D=13.92\) ) than those who had not eaten one of the five \(D N C\) fish ( \(M=11.52, S D=15.80, \mathrm{t}=2.43, \mathrm{p}<0.05\) ). There were no statistical differences between gender, age, ethnicity, fishing mode, or awareness of a warning sign.

To determine the extent that warning signs may alter angler's consumption of the five DNC fish, an analysis was conducted comparing the 98 anglers who reported eating one or more of the DNC fish and the 172 anglers who reported consuming one or more non-DNC fish. The results indicate that \(65 \%\) of anglers who reported consuming one of the five DNC fish were aware of the advisory,
compared with \(70 \%\) of anglers who consumed other fish. This result could point to the possibility that exposure to the warning sign may have reduced consumption of the five DNC fish, while potentially increasing the consumption of other fish species deemed safe. Despite an apparent trend towards the expected direction, the reported results were not shown to be statistically significant (chi-square=0.67, \(d f=1, p=0.41\) ).

Finally, the analyses examined the effects of the medium used to communicate the warning: television, newspaper or magazine, sign on the beach or pier, heard from other fishermen or friends, or other. Only one of the media emerged as a statistically significant predictor of consumption. Those anglers who reported eating one or more of the five DNC fish were more likely to report seeing a warning sign on a beach or pier ( \(83 \%\) ), compared with anglers who reported eating other fish species \((68 \%\), chi-square \(=4.99, \mathrm{df}=1, \mathrm{p}<0.05)\). This result is inconsistent with the expected relationship between awareness of health advisory warnings and avoidance of DNC fish.

\subsection*{5.7.2. ANGLER INTENTION TO CONSUME DNC FISH}

All anglers were asked about their consumption of the five DNC fish. If a surveyor identified one of the DNC fish in an angler's bucket, the angler was asked about their intended use of the specific fish (Q13). If the fish was not present, anglers were asked about consumption while being shown a picture of the fish (Q16-Q19). See Appendix H for samples of the fish identification pictures.

Table 18 shows that more than \(40 \%\) of the anglers would consume barred sand bass and barracuda. Approximately \(24 \%\) of the anglers would consume black croaker, and approximately \(18 \%\) of the anglers would consume white croaker. It is important to note that these findings indicate an intention to consume DNC species, should the angler come into possession of the fish.

Table 18. Fate of DNC fish for all anglers ( \(\mathrm{N}=693\) )(Q13 \& Q18).
\begin{tabular}{|l|cc|c|c|c|c|c|cc|cc|}
\hline Fish species & \multicolumn{2}{c}{ white croaker } & \multicolumn{2}{c}{\begin{tabular}{c} 
barred sand \\
bass
\end{tabular}} & \multicolumn{2}{c|}{ black croaker } & \multicolumn{2}{c|}{ topsmelt } & \multicolumn{2}{c|}{ barracuda } \\
\hline Fate of fish & Count & \(\%\) \\
\hline Eat them & 46 & \(18.1 \%\) & 110 & \(41.2 \%\) & 20 & \(24.1 \%\) & 35 & \(14.0 \%\) & 112 & \(40.7 \%\) \\
Give away & 26 & \(10.2 \%\) & 39 & \(14.6 \%\) & 7 & \(8.4 \%\) & 25 & \(10.0 \%\) & 59 & \(21.5 \%\) \\
Throw back & 169 & \(66.5 \%\) & 115 & \(43.1 \%\) & 54 & \(65.1 \%\) & 102 & \(40.8 \%\) & 98 & \(35.6 \%\) \\
Bait & 11 & \(4.3 \%\) & 1 & \(0.4 \%\) & 1 & \(1.2 \%\) & 87 & \(34.8 \%\) & 3 & \(1.1 \%\) \\
Other & 2 & \(0.8 \%\) & 2 & \(0.7 \%\) & 1 & \(1.2 \%\) & 1 & \(0.4 \%\) & 3 & \(1.1 \%\) \\
\hline TOTAL & 254 & \(100 \%\) & 267 & \(100 \%\) & 83 & \(100 \%\) & 250 & \(100 \%\) & 275 & \(100 \%\) \\
\hline
\end{tabular}

NOTE. There were 142 missing cases ( 27 missing white croaker, 37 missing barred sand bass, 11 missing black croaker, 32 missing topsmelt, and 35 missing barracuda).
Data were also collected to determine the number of anglers who would consume DNC fish found in their buckets. However, the sample size was too small to draw definitive conclusions. These data were tabulate and included in Appendix M.

Similarly, analysis was conducted for each mode of fishing, breaking down anglers who have consumed DNC fish in the four weeks prior to being surveyed into percentages by race or ethnicity. The sample sizes were too small to draw definitive conclusions. The four tables can be found in Appendix M.

\subsection*{5.7.3. CONSUMPTION OF DNC FISH BY ETHNICITY}

Table 19 shows the reported consumption rates of the five DNC fish (Q12, Q15, Q16, Q20) in the last four weeks according to ethnicity. Consumption patterns vary across ethnicity but are driven by relatively small sample sizes.

Table 19. Fish consumption by angler ethnicity ( \(\mathrm{N}=661\) ).
\begin{tabular}{|l|cc|cc|cc|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Angler \\
Ethnicity
\end{tabular} & \multicolumn{2}{c}{ Hispanic } & \multicolumn{2}{c}{ White } & \multicolumn{2}{c}{ Asian } & \multicolumn{2}{c}{ Black } & \multicolumn{2}{c|}{ Other } & Total \\
\hline DNC Fish & Count & \(\%\) & Count \\
\hline White croaker & 9 & \(16.7 \%\) & 4 & \(14.3 \%\) & 9 & \(26.5 \%\) & 4 & \(40.0 \%\) & 1 & \(16.7 \%\) & 27 \\
Barred sand bass & 21 & \(38.9 \%\) & 16 & \(57.1 \%\) & 10 & \(29.4 \%\) & 5 & \(50.0 \%\) & 2 & \(33.3 \%\) & 54 \\
Black croaker & 2 & \(3.7 \%\) & 1 & \(3.6 \%\) & 3 & \(8.8 \%\) & 0 & \(0.0 \%\) & 0 & \(0.0 \%\) & 6 \\
Topsmelt & 5 & \(9.3 \%\) & 0 & \(0.0 \%\) & 6 & \(17.6 \%\) & 0 & \(0.0 \%\) & 0 & \(0.0 \%\) & 11 \\
Barracuda & 17 & \(31.5 \%\) & 7 & \(25.0 \%\) & 6 & \(17.6 \%\) & 1 & \(10.0 \%\) & 3 & \(50.0 \%\) & 34 \\
\hline TOTAL & 54 & \(100 \%\) & 28 & \(100 \%\) & 34 & \(100 \%\) & 10 & \(100 \%\) & 6 & \(100 \%\) & 132 \\
\hline
\end{tabular}

Note. There are 32 missing cases. Count refers to the number of anglers observed.
Table 20 shows how anglers reportedly prepared DNC fish for consumption. White croaker, barred sand bass, black croaker, and barracuda had similar preparation patterns wherein approximately
half of the caught fish were prepared as steaks or fillets without skin. The remaining half was prepared using less ideal methods, with roughly one-in-five being prepared whole.

In contrast, topsmelt had a different consumption pattern with only \(30 \%\) being prepared as a steak or fillet without skin and \(35 \%\) being prepared whole with guts, which is the least protective preparation method.

Table 20. Reported fish preparation methods for consumption of DNC fish ( \(\mathbf{N}=110\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q19 & \multicolumn{2}{|l|}{white croaker} & \multicolumn{2}{|l|}{barred sand bass} & \multicolumn{2}{|l|}{black croaker} & \multicolumn{2}{|l|}{barracuda} & \multicolumn{2}{|l|}{topsmelt} \\
\hline Fish part & Count & \% \\
\hline Whole with guts & 3 & 7.3\% & 4 & 3.4\% & 1 & 5.0\% & 1 & 0.9\% & 0 & 0.0\% \\
\hline Whole without guts & 7 & \[
\begin{gathered}
17.1 \\
\%
\end{gathered}
\] & 21 & \[
\begin{gathered}
18.1 \\
\%
\end{gathered}
\] & 4 & \[
\begin{gathered}
20.0 \\
\%
\end{gathered}
\] & 18 & \[
\begin{gathered}
16.8 \\
\%
\end{gathered}
\] & 7 & \[
\begin{gathered}
35.0 \\
\%
\end{gathered}
\] \\
\hline As steaks or fillets without the skin & 21 & \[
\begin{gathered}
51.2 \\
\%
\end{gathered}
\] & 62 & \[
\begin{gathered}
53.4 \\
\%
\end{gathered}
\] & 12 & \[
\begin{gathered}
60.0 \\
\%
\end{gathered}
\] & 62 & \[
\begin{gathered}
57.9 \\
\%
\end{gathered}
\] & 5 & \[
\begin{gathered}
25.0 \\
\%
\end{gathered}
\] \\
\hline As steaks or fillets with the skin & 6 & \[
\begin{gathered}
14.6 \\
\%
\end{gathered}
\] & 20 & \[
\begin{gathered}
17.2 \\
\%
\end{gathered}
\] & 2 & \[
\begin{gathered}
10.0 \\
\%
\end{gathered}
\] & 19 & \[
\begin{gathered}
17.8 \\
\%
\end{gathered}
\] & 6 & \[
\begin{gathered}
30.0 \\
\%
\end{gathered}
\] \\
\hline Other parts of fish & 1 & 2.4\% & 0 & 0.0\% & 1 & 5.0\% & 1 & 0.9\% & 0 & 0.0\% \\
\hline Don't Know & 3 & 7.3\% & 9 & 7.8\% & 0 & 0.0\% & 6 & 5.6\% & 2 & \[
\begin{gathered}
10.0 \\
\%
\end{gathered}
\] \\
\hline TOTAL & 41 & 100\% & 116 & 100\% & 20 & 100\% & 107 & 100\% & 20 & 100\% \\
\hline
\end{tabular}

\subsection*{5.7.4. DNC FISH CONSUMPTION VOLUME}

All anglers were asked specifically about consumption of the five DNC fish either through Q1 2 or Q17. Table 21 shows a comparison of the consumption rate of the five DNC fish for anglers who reported consuming DNC fish in the four weeks prior to being surveyed (Angler-Consumers) and those who had not consumed fish in the four weeks prior to being surveyed (Those Who Catch). There were 106 angler-consumers and 483 "Those Who Catch." The number of anglers who reported eating a specific DNC fish in both groups of anglers is represented by ( n ). Some anglers consumed multiple types of DNC fish, therefore, the populations overlap and the ( n ) displayed in the table sum to more than 100 for both groups.

Table 21. Quantitative measure of fish consumption of the five DNC fish ( \(\mathbf{N}=106 \& N=483\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Consumption Rate (g/ind./day)} \\
\hline All Races/ Ethnicities & \multicolumn{5}{|c|}{Angler-Consumers*} & \multicolumn{5}{|c|}{Those Who Catch (Q9, Q16)**} \\
\hline Fish Type & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline white croaker \({ }^{\text {DNC }}\) & 23 & 8.73 & 11.10 & 5.36 & 19.29 & 263 & 0.76 & 1.17 & 0.00 & 0.00 \\
\hline barred sand bass DNC & 56 & 9.04 & 13.39 & 5.36 & 17.67 & 299 & 1.69 & 2.42 & 0.00 & 5.36 \\
\hline black croaker \({ }^{\text {DNC }}\) & 6 & 10.27 & 17.41 & 8.04 & -- & 94 & 0.66 & 1.42 & 0.00 & 0.00 \\
\hline topsmelt DNC & 8 & 17.41 & 39.50 & 8.04 & -- & 239 & 0.58 & 1.47 & 0.00 & 0.00 \\
\hline barracuda \({ }^{\text {DNC }}\) & 32 & 9.71 & 15.64 & 5.36 & 17.95 & 298 & 1.04 & 1.81 & 0.00 & 2.68 \\
\hline Total & 106 & 11.50 & 16.54 & 5.36 & 24.11 & 483 & 2.52 & 3.52 & 0.00 & 5.36 \\
\hline
\end{tabular}

NOTE: U.C.L. = Upper Confidence Limit (95\%); Md = Median (50\%); U.D. = Upper Decile (90\%); *Angler-Consumers ARE DEFINED AS ANGLERS WHO REPORTED CONSUMING FISH IN THE 4 WEEKS PRIOR TO BEING SURVEYED - CONSISTENT WITH THE 1994 STUDY METHOD; **FULL SAMPLE OF "THOSE WHO CATCH" ASSUMES THAT ANGLERS WITH FISH WHO HAD NOT CONSUMED A FISH IN THE FOUR WEEKS PRIOR TO BEING SURVEYED ARE NOT CONSUMERS OF FISH - THIS CALCULATION UNDERREPORTS ACTUAL CONSUMPTION RATES; TOTAL INDICATES COMBINED CONSUMPTION RATES IN G/IND/DAY ACROSS THE FIVE FISH OF INTEREST. CONSUMERS ARE ANGLERS WHO REPORTED EATING THE FISH SPECIES IN THE PAST FOUR WEEKS. ANGLERS WERE ASKED TO REPORT ALL THAT APPLIED.

Consumption rates by ethnicity were also calculated for each DNC fish. However, sample sizes were not adequate for potential application in future risk evaluations. The results are displayed in Tables 21.b.-21.g. in Appendix M.

Table 22 shows the consumption rate according to fishing mode between two angler groups. Anglers were grouped either as anglers who reported consuming fish within the past four weeks (Q3, Q6) prior to being surveyed (Angler-Consumers) and anglers who indicated they had not consumed within the past four weeks (Full Sample). Mean consumption rates were generally consistent among the different modes for both groups of anglers. Charter boats had the lowest mean consumption rate among angler-consumers whereas pier/jetty had the lowest mean consumption rate among the Full Sample anglers. Beach or intertidal zones had the highest mean consumption rate for anglerconsumers whereas private boats had the highest mean consumption rate among the Full Sample anglers. The median for all modes was 10.71 for angler consumers but the median consumption rate for the Full Sample anglers was coded as zero.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Consumption Rate (g/ind./day)} \\
\hline All Races/ Ethnicities & & Ang & r-Cons & mers* & & & & Sampl & & \\
\hline Mode & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline Pier or Jetty & 102 & 19.22 & 24.11 & 10.71 & 61.07 & 338 & 5.80 & 7.59 & 0.00 & 16.07 \\
\hline Charter Boat & 82 & 16.69 & 21.85 & 10.71 & 32.14 & 189 & 7.24 & 9.79 & 0.00 & 21.43 \\
\hline Private Boat & 55 & 19.48 & 28.49 & 10.71 & 42.86 & 139 & 7.71 & 11.81 & 0.00 & 21.43 \\
\hline Beach/Intertidal Zone & 10 & 20.09 & 28.92 & 16.07 & 42.86 & 27 & 7.44 & 12.60 & 0.00 & 30.00 \\
\hline Total & \(270^{\text {a }}\) & 18.55 & 21.41 & 10.71 & 42.86 & 693 & 6.64 & 7.95 & 0.00 & 21.43 \\
\hline
\end{tabular}

NOTE: U.C.L. = UPPER CONFIDENCE LIMIT (95\%); Md = MEDIAN (50\%); U.D. = UPPER DECILE (90\%); **FISH CONSUMERS ARE DEFINED AS ANGLERS WHO REPORTED CONSUMING FISH IN THE FOUR WEEKS PRIOR TO BEING SURVEYED - CONSISTENT WITH THE 1994 STUDY METHOD; **FULL SAMPLE ASSUMES THAT ANGLERS WHO HAD NOT CONSUMED A FISH IN THE FOUR WEEKS PRIOR TO BEING SURVEYED ARE NOT CONSUMERS OF FISH - THIS CALCULATION UNDERREPORTS ACTUAL CONSUMPTION RATES; A THERE WERE 21 Instances of missing data. N=270 REPRESENTS Number of Anglers. Anglers were asked to report all that APPLIED.

\subsection*{5.8. AWARENESS OF ADVISORY \& BEHAVIOR}

\subsection*{5.8.1. AWARENESS OF HEALTH ADVISORY WARNINGS}

Anglers were asked a series of questions pertaining to their awareness of heard health advisory warnings regarding eating fish caught in the study region (Q21). Figure 14 shows that \(61 \%\) of anglers ( \(\mathrm{N}=425\) ) were aware of the health warnings.

Figure 14. Percentage of anglers who reported being aware of the health advisory ( \(\mathrm{N}=693\) ).


Figure 15 shows that awareness of advisory warnings varied across angler ethnicities. White anglers were most aware ( \(67 \%\) ) and Black anglers were the least aware ( \(47 \%\) ) of the advisory warnings.

Figure 15. Percentage of anglers who reported being aware of the health advisory by ethnicity ( \(\mathrm{N}=693\) ).


\subsection*{5.8.2. AWARENESS OF HEALTH ADVISORY CONTENT}

Figure 16 shows the relationship between awareness of fish advisories and consumption of contaminated fish. Anglers who reported being aware of health advisory warnings were asked about the content of the warning in an open-ended manner that allowed for respondents to select more than one identifiable message. More than half ( \(53.8 \%\) ) indicated that the advisory warned that fish are contaminated. The second most popular response ( \(37 \%\) ) was "do not eat white croaker." Awareness of the risks of other DNC fish were: \(14.3 \%\) for barracuda, \(11.8 \%\) for black croaker, \(8.8 \%\) for topsmelt, and \(0.2 \%\) for barred sand bass. Approximately \(8 \%\) of anglers who reported being slightly aware of the health advisory warnings were unable to identify any particular content of the warnings (Don't know at \(5.1 \%\) and Other at \(3.0 \%\) ).

Figure 16. Percent of aware angler population able to identify each outreach message ( \(\mathrm{N}=425\) ).


NOTE. Respondents could choose more than one answer. Percentage may sum to more than 100\%. Orange bars REPRESENT RESPONSES RELATING TO DNC FISH.

\subsection*{5.8.3. ADVISORY COMMUNICATION CHANNEL}

Figure 17 shows how anglers became aware of the fish advisories or warnings. The overwhelming majority of anglers ( \(76 \%\) ) who had seen or heard of a warning stated that they had seen signs on the beach or pier. The second most popular response was by word of mouth, via other fishermen or friends. Only 20\% reported learning about the warning from traditional media such as television, online a newspaper or a magazine. Other responses included the government, food packages, and "everywhere."

Figure 17. Method of learning about the health advisory ( \(\mathrm{N}=425\) ).


NOTE. Respondents could choose more than one answer. Percentage may sum to more than 100\%.

\subsection*{5.8.4. ADVISORY AWARENESS AND BEHAVIOR CHANGE}

Those who had seen or heard a warning were asked how the warning changed their fishing or fisheating habits. Figure 18 shows that \(51 \%\) of those who had seen or heard warnings ( \(\mathrm{N}=212\) ) stated that they had not changed their fishing or fish-eating habits despite more than \(80 \%\) of anglers indicating that they found the message to be important or very important. More than \(40 \%\) of anglers reported adopting a healthier behavior due to the warnings ( \(23 \%\) no longer eat the fish, \(14 \%\) avoid target fish species, and 5\% reduce overall consumption). "Other" responses included, "not sure" and "now l'll look for the [warnings]".

Figure 18. Change in behavior as a result of advisory awareness ( \(\mathrm{N}=425\) ).


NOTE. EIGHT MISSING CASES
Analysis was conducted to evaluate Advisory Awareness and Behavior Change by ethnicity mode. However, the dataset was too small to draw meaningful conclusions. The data can be found in Table 25 in Appendix M.

\subsection*{5.8.5. PERCEIVED IMPORTANCE OF ADVISORY}

Figure 19 shows how the importance of the warnings was perceived by those who had seen or heard a warning. Results of the survey shows that more than \(80 \%\) of those who had seen or heard the advisories or warnings ( \(\mathrm{N}=348\) ) stated that the warnings were either important or very important.

Figure 19. Importance of the advisory/warnings as reported by anglers ( \(\mathbf{N}=425\) ).


NOTE. THERE WAS 1 missing CASE
Figure 20 shows that angler perception of the importance of the advisory varied across ethnicities. Hispanic and Asian anglers considered the advisory to be highly important at \(86 \%\) and \(84 \%\), respectively. Black anglers and anglers of different or mixed ethnicities placed the lowest importance ( \(70 \%\) ) on the advisories or warnings.

Figure 20. Percentage of anglers believing advisory warnings are important by ethnicity ( \(\mathrm{N}=458\) ).


When the data were analyzed to compare the perceived importance of the warning based on ethnicity and fishing mode, the sample size was too small to draw meaningful conclusions. The data can be found in Table 25.a. in Appendix M.

\subsection*{5.9. COMPARISONS OVER TIME}

The survey methodology used in the Study was modeled on the methods reported in the 1994 Seafood Consumption Study conducted by the Santa Monica Bay Restoration Project. Similar to the methodology reported here, the 1994 Study involved surveys conducted over a one year period, using the same four fishing modes and comparable survey hours in the field. The similarity in methods allows for a comparison of changes in angler characteristics, durations of exposure and consumption habits over time, as described below.

\subsection*{5.9.1. SAMPLE SIZE}

Table 23 shows that the 1994 Study reported a final sample size of 1243 anglers and a response rate of \(71 \%\). The sample size obtained in the current Study was 693 and a higher response rate of \(78 \%\). The decline in total number of responses may be attributed to a possible decline in the angler population; however, this is only supported by the decreased number in anglers who were surveyed or counted. Although the Study had more days in the field across more sites than the 1994 Study, fewer surveys were completed.

Surveyors conducted a census wherein all anglers were counted. The total number of anglers counted across all fishing modes in 2014 was 1449 compared to 2376 in 1994. Another indicator is the number of fishing licenses issued in the State of California. In the two decades since the data were collected for the 1994 report, the number of fishing licenses issued has decreased by \(21 \%\). In 1994, the State issued 3.27 million sport fishing licenses, and in 2012 the State issued 2.59 million licenses (www.dfg.ca.gov/licensing/statistics).

Table 23. Comparison across Seafood Consumption Studies 1994 vs 2014.
\begin{tabular}{|lcc|}
\hline Study & 1994 Study (SMBRP 1994) & 2014 Seafood Consumption Study \\
\hline Surveying days & 99 & 128 \\
Fishing sites & 29 & 61 \\
Anglers counted & 2376 & 1449 \\
Anglers approached & 1751 & 888 \\
Angler responses & 1243 & 693 \\
Response rate & \(71 \%\) & \(78 \%\) \\
\hline
\end{tabular}

\subsection*{5.9.2. ANGLER CHARACTERISTICS}

Figure 21 shows the change in ethnicity of anglers from 1994 to 2014 . White anglers comprised \(43 \%\) of anglers in the 1994 Study compared to only \(24 \%\) in 2014 . Hispanic, Asian, and anglers of other ethnic backgrounds made significant increases in the overall population. Collectively, they made up only \(45 \%\) of the angling population in 1994 and now comprise approximately \(70 \%\).

Figure 21. Angler ethnicities across 1994 and 2014 Study ( \(\mathrm{N}=693\) ).


Although the ethnic makeup of anglers has changed, it is important to understand that change in relation to the overall population. Figure 22 shows that the increase in the number of Hispanic anglers closely correlated with the increase in the regional population. Hispanic anglers made up \(25 \%\) of the angling population in 1994 and \(28 \%\) of the general population ( 1990 census). This is equivalent to an ethnic participation rate of 0.89 ( \(0.25 / 0.28\) ). In 2014 , Hispanic anglers made up \(37 \%\) of the angling population and \(48 \%\) of the general population ( 2010 census). This is equivalent to an ethnic participation rate of 0.83 . Although Hispanics currently make up a greater portion of all anglers, participation among Hispanics is actually declining.

Figure 22. Ethnic participation rate across 1994 and 2014 Study (N=693).


Ethnic participation is declining for all races except Black anglers. Although Black anglers have declined from 10\% of anglers in 1994 to 6\% in 2012, interest in angling has actually increased among the Black population. In interpreting the data, the participation rate is not a percentage of an ethnicity that participates in fishing activities, but rather the percent of an ethnic group that participates in angling activities compared against their statistically expected proportion.

\subsection*{5.9.3. AGE AND YEARS OF FISHING EXPERIENCE}

In addition to shifts in ethnicity, there were also large shifts in average age of anglers. In 1994, \(54 \%\) of the anglers were reported to be between 21 and 40 years of age. In this Study, only 40\% of the anglers are within that age range. This trend demonstrates a general aging of the angling population.

Length of fishing experience in the general angler population seems to have remained constant over the past two decades. In the 1994 Study, \(46 \%\) of the anglers reported fishing in the study region between zero and five years. In the Study, 52\% reported fishing in the study region for the same amount of time.

\subsection*{5.9.4. FREQUENCY AND AMOUNT CONSUMED}

Approximately \(39 \%\) of anglers reported eating fish in 1994 from the slightly larger study region. That percentage remained the same two decades later. While the percentage of anglers who reported eating fish remained the same, there have been changes in consumption amounts. The 1994 study reported a median consumption rate of \(21.4 \mathrm{~g} / \mathrm{ind} /\) day across all species for anglers
who had fish in hand. In the current study, the median consumption rate is \(10.7 \mathrm{~g} / \mathrm{ind} / \mathrm{day}\). This change cannot be attributed to differing survey methods because the survey methods were nearly identical.

One possible explanation for the reduction in consumption amount is the limited number of fish species included in the 1994 Study estimate. The 1994 Study calculated consumptions rates for anglers who reported consuming one or more of eight fish of interest; for this Study calculated consumption rates were based on anglers who reported consuming any and all locally caught fish species. However, this computational difference would actually underestimate overall consumption in the 1994 Study.

\subsection*{5.9.5. COMMONLY CONSUMED FISH}

Figure 23 shows that the most commonly consumed fish in 1994 were Pacific bonito ( \(77.5 \%\) ), barracuda ( \(74.2 \%\) ) and halibut ( \(69.6 \%\) ). In the current Study, the most commonly consumed species were mackerel ( \(27 \%\) ), Pacific sardine ( \(21 \%\) ), perch ( \(19 \%\) ) and topsmelt \({ }^{\text {DNC }}\) ( \(19 \%\) ).

Figure 23. Commonly consumed fish species 1994 and 2014 Study.


\subsection*{5.9.6. PREPARATION METHODS}

Preparation methods remained consistent from 1994 to present. The majority of consumers ( \(63 \%\) in the current Study and \(65 \%\) in 1994) reported eating the fish as a steak or fillet without the skin.

\subsection*{5.9.7. COMPARISON TO SAN FRANCISCO STUDY}

A review of the 2000 San Francisco Bay Seafood Consumption Report indicated that the consumption results from that study were significantly similar to the result of this Study. However, the same caveats used in the San Francisco study are repeated here: "Comparisons of consumption rates between studies are inherently difficult to make. Study methodologies are rarely identical and differences in method can greatly affect the results." For example, the San Francisco report used a 227-gram filet model during interviews while other surveys, including this most recent report, tended to use a 150 -gram filet model. The San Francisco report noted that the different size model biased results, although the magnitude and influence of the bias cannot be known.

Table 24 shows that the total mean in the current study is higher than the total mean in the San Francisco study, but the total median is lower. This indicates that the results from the current study are biased by a number of high consumers while the San Francisco consumption results are comprised of a more consistent distribution of consumers. In each report, Black anglers reported the highest mean consumption rate.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Consumption Rate (g/ind./day)} \\
\hline & Palos & If 2014 & & San Francisco & udy \\
\hline Ethnicity & n & Mean & Median & Mean & Median \\
\hline Hispanic & 80 & 16.41 & 10.71 & 16.6 & 16.0 \\
\hline Asian & 76 & 20.76 & 10.71 & 17.8 & 16.0 \\
\hline White & 54 & 19.25 & 9.38 & 14.4 & 16.0 \\
\hline Black & 17 & 23.00 & 16.07 & 19.4 & 16.0 \\
\hline Other & 22 & 12.78 & 6.70 & - & - \\
\hline Total & 270 \({ }^{\text {a }}\) & 18.55 & 10.71 & 16.5 & 16.0 \\
\hline
\end{tabular}

\section*{SECTION 6}

\section*{RECOMMENDATIONS FOR FUTURE OUTREACH}

\section*{SECTION 6 - RECOMMENDATIONS FOR FUTURE OUTREACH}

In reviewing the Study data, the following findings emerged as potential areas around which to shape future outreach efforts.

With regard to the findings in this Seafood Consumption Study indicating whether or not the ICs Program has been effective in reducing human health risks by preventing exposures to fish contaminated with DDT and PCBs, it is conclusion of this Study that Educational Outreach has been effective at reducing human exposures to contaminated fish and shellfish within the Study region from Palos Verdes Shelf Superfund Site' contamination. However, as fish continue to exceed protective levels for human consumption as established in EPA's IROD, the Educational Outreach program will continue to serve as a major Institutional Control component of EPA's interim remedy for the Study Area/study region.

\subsection*{6.1. ANGLER LANGUAGE NEEDS}

Despite having a diverse survey team speaking a range of languages (English, Spanish, Vietnamese, Mandarin, Cantonese, and Tagalog), English and Spanish covered \(99.9 \%\) of all anglers surveyed. However, there was limited additional data that could be collected from Korean anglers because the survey team lacked a Korean-speaking surveyor. Surveyors did not collect hard data on the language spoken by anglers who declined to be surveyed due to language barriers. In part, this was due to logistical issues and the inability to accurately determine what language was actually being spoken. Nearly \(23 \%\) of all anglers approached declined to be surveyed and the main reason given was language difficulties. Continuing to recruit outreach workers who match the diverse ethnic backgrounds of the Southern California angler population is recommended, particularly as the ethnic makeup changes over time.

\subsection*{6.2. ANGLER AGE}

The Study demonstrated that there is a decline in number of anglers between 21 and 40 years of age. However, the length of fishing experience did not change and remained between 0 to five years.

Consequently, future outreach should take into consideration the relative inexperience of anglers and the need for ongoing outreach due to a \(20 \%\) rate of turn-over in the angler population each year.

\subsection*{6.3. BLACK ANGLERS}

Black anglers are reported to have the highest consumptions rates of fish and DNC fish. Black anglers also have the least overall awareness of health advisory warnings ( \(47 \%\) ) and are reported to be the least concerned about the importance of health advisory warnings. Black anglers are overrepresented in the beach or intertidal zone mode of fishing, which is also the most challenging mode to outreach or survey.

It is recommended that outreach programs include activities that directly target this particular ethnic group of anglers. EPA has begun increasing efforts specifically designed to reach the Black angler population.

\subsection*{6.4. ASIAN ANGLER OUTREACH}

The Asian population remains an important population of anglers. In contrast to other ethnic group of anglers whose activity diminishes in the winter months, Asian angler activity increases in the winter months.

While outreach activities have been somewhat curtailed in the winter months, it is recommended that future outreach to this large ethnic group be effectively increased during the winter in order to have continuity and consistency in conveying the messages to anglers.

\subsection*{6.5. BARRED SAND BASS}

All anglers were asked about DNC fish consumption intentions. Barred sand bass had the highest rate of intended consumption at \(41.2 \%\). Moreover, when asked about health advisory warnings, only \(0.2 \%\) of anglers indicated awareness of warnings about barred sand bass. Collectively, these findings suggest a need for additional outreach on barred sand bass identification and risks.

EPA is including barred sand bass in the 2014-15 Palos Verdes Shelf fish sampling activity. This information will be used to reassess human health risks from consumption and for updating the EPA's outreach message for this species.

\subsection*{6.6. HEALTH ADVISORY AWARENESS}

General outreach efforts are being significantly expanded at piers to have a greater impact and to increase targeted ethnic outreach.

While public outreach and education have made a difference in reducing health risk due to consumption of contaminated fish, continued efforts to increase public awareness of health advisories are warranted. EPA and partners will continue to monitor vulnerable angler populations and will implement activities to reach, educate, and ultimately foster healthy fish consumption behaviors among those who consume fish caught in the study region.

\section*{REFERENCES}

California Department of Fish and Game. 2012. Fish License Statistics. Available from: www.dfg.ca.gov/licensing/statistics

Environmental Health Investigators Branch (EHIB) of the California Department of Health Services \& Impact Assessment Incorporated. 2000. San Francisco Bay Seafood Consumption Report. San Francisco Estuary Institute, Richmond, CA.

Environmental Protection Agency. (2002). Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. Office of Emergency and Remedial Response, Washington, DC: EPA.

Jonick, T., E. Anderson, C. Bruni, P.W. Schultz, S. Lin, S. Groner \& F. Orrala. 2010. What's the Catch? Reducing Contaminated Fish Consumption Among Anglers. Social Marketing Quarterly

MSRP (Montrose Settlements Restoration Program) and U.S. EPA. 2007. 2002-2004 Southern California Coastal Marine Fish Contaminants Survey. June 2007. Online at: http://www.epa.gov/region09/waste/sfund/pvshelf/pdf/montrose report.pdf.

Office of Environmental Health Hazards Assessment. 2009. Health Advisory and Safe Eating Guidelines for Fish from Coastal Areas of Southern California: Ventura Harbor to San Mateo Point. Available from: http://oehha.ca.gov/fish/so cal/pdf zip/SoCalAdvisoryl61809.pdf

Southern California Coastal Water Research Project and MBC Applied Environmental Sciences (SCCWRP/MBC). 1994. Santa Monica Bay Seafood Consumption Study. Santa Monica Bay Restoration Project.

United States Department of Commerce Bureau of Census. 2010. 2010 Census of population and housing: census tracts Los Angeles-Long Beach, Calif. U. S. Bur. Census, Washington, DC.

United States Environmental Protection Agency. 2009. Interim Record Of Decision Palos Verdes Shelf Operable Unit 5 Of Montrose Chemical Corporation Superfund Site, San Francisco, California

\section*{APPENDIX A}

\section*{REGIONAL MAP OF PV SHELF AREA, LIST AND MAP OF FISHING LOCATIONS}

\section*{Regional Map of PV Shelf Area}

\begin{tabular}{|c|c|l|}
\hline PV Shelf Geographical Region & \multicolumn{1}{|c|}{ Code } & Description \\
\hline Central Bay & A & Santa Monica Municipal Pier to Playa Del Rey Beach \\
\hline South Bay & B & Manhattan Beach to Redondo Beach \\
\hline Los Angeles Harbor & C & Cabrillo Fishing Pier and Cabrillo Boat Ramp \\
\hline Long Beach & D & S of Cabrillo Boat Ramp to Seal Beach Pier \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline Fishing Mode & \multicolumn{1}{|c|}{ Code } \\
\hline Piers and jetties & 1 & \begin{tabular}{l} 
morning (08:00-12:00) \\
afternoon (12:00-16:00) \\
evening (16:00-20:00)
\end{tabular} \\
\hline Private boats & 2 & \begin{tabular}{l} 
morning (08:00-12:00) \\
afternoon (12:00-16:00) \\
evening (16:00-20:00)
\end{tabular} \\
\hline Party boats & 3 & \begin{tabular}{l} 
late morning (10:30-14:30) \\
afternoon (14:30-18:30)
\end{tabular} \\
\hline Beaches and Rocky Intertidal Zones & 4 & conducted prior to associated Pier/Jetty surveys for 1 hr \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Region Code & Type Number & Associated Pier/Jetty \\
\hline Santa Monica State Beach & A & 4 & Santa Monica Municipal Pier \\
\hline Santa Monica Municipal Pier & A & 1 & \\
\hline Venice City Beach & A & 4 & Venice Fishing Pier \\
\hline Venice Fishing Pier & A & 1 & \\
\hline Marina del Rey Boat Ramp & A & 2 & \\
\hline Burton Chace Fishing Platform & A & 4 & Marina del Rey Jetty \\
\hline Marina del Rey Beach & A & 4 & Marina del Rey Jetty \\
\hline Marina del Rey Sportfishing & A & 3 & \\
\hline Marina del Rey Fishing Dock & A & 4 & Marina del Rey Jetty \\
\hline Marina del Rey Jetty & A & 1 & \\
\hline Ballona Creek Bridge and Jetties & A & 1 & \\
\hline Playa Del Rey Beach & A & 4 & Ballona Creek Bridge and Jetties \\
\hline Dockweiler State Beach & A & 4 & Standalone \\
\hline El Porto Beach & B & 4 & Standalone \\
\hline Manhattan Beach Municipal Pier & B & 1 & \\
\hline Manhattan County Beach & B & 4 & Manhattan Beach Municipal Pier \\
\hline Hermosa Beach Municipal Pier & B & 1 & \\
\hline Hermosa City Beach & B & 4 & Hermosa Beach Municipal Pier \\
\hline King Harbor Breakwater & B & 1 & \\
\hline Rocky Point Skiff Rentals & B & 2 & \\
\hline Rocky Point Charters & B & 3 & \\
\hline Redondo Sport Fishing Boats & B & 3 & \\
\hline Redondo Sport Fishing Pier and Small Jetty & B & 1 & \\
\hline King Harbor Boat Hoist & B & 2 & \\
\hline King Harbor South Jetty & B & 1 & \\
\hline Redondo Beach Municipal Pier & B & 1 & \\
\hline Redondo County Beach & B & 4 & Redondo Beach Municipal Pier \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Torrance County Beach & C & 4 & Standalone \\
\hline Malaga Cove & C & 4 & Standalone \\
\hline Bluff Cove & C & 4 & Standalone \\
\hline Lunada Bay & C & 4 & Standalone \\
\hline Abalone Cove & C & 4 & Standalone \\
\hline Portuguese Bend & C & 4 & Standalone \\
\hline Royal Palms Beach / White Point Beach & C & 4 & Standalone \\
\hline Cabrillo Fishing Pier & C & 1 & \\
\hline San Pedro Breakwater & C & 1 & \\
\hline Cabrillo Beach & C & 4 & Cabrillo Fishing Pier \& San Pedro Breakwater \\
\hline Cabrillo Boat Ramp & C & 2 & \\
\hline 22nd Street Landing & C & 3 & \\
\hline LA Harbor Sportfishing & D & 3 & \\
\hline Pier J & D & 1 & \\
\hline Long Beach Sportfishing & D & 3 & \\
\hline South Shores Launch Ramp & D & 2 & \\
\hline Rainbow Harbor Marina / Pierpoint Landing & D & 1 & \\
\hline Shoreline Park Piers & D & 1 & \\
\hline Shoreline Village & D & 4 & Shorline Village Park Piers \\
\hline Shoreline Marina Piers & D & 1 & \\
\hline Shoreline Village East Jetty & D & 1 & \\
\hline Cherry Beach & D & 4 & Shoreline Village East Jetty and Shoreline Marina Piers \\
\hline Belmont Pier & D & 1 & \\
\hline Belmont Pier Launch Area & D & 2 & \\
\hline Granada Launch Ramp & D & 2 & \\
\hline Claremont Launch Ramp & D & 2 & \\
\hline Bayshore & D & 4 & Belmont Pier \\
\hline Marine Stadium Launch Area & D & 2 & \\
\hline Davies Launch Ramp & D & 2 & \\
\hline Long Beach Marina Sportfishing & D & 3 & \\
\hline Alamitos Bay West Jetty & D & 1 & \\
\hline Seaport Village Jetty & D & 1 & \\
\hline Seal Beach & D & 4 & Seal Beach Pier \\
\hline Seal Beach Pier & D & 1 & \\
\hline
\end{tabular}

Map of Fishing Locations


\section*{APPENDIX B}

\section*{QUESTIONNAIRES IN ENGLISH, SPANISH, VIETNAMESE, CHINESE AND TAGALOG}

\section*{English Questionnaire}
Participant Questionnaire
\begin{tabular}{lll} 
COMPLETE BY SURVEYOR PRIOR TO INTERVIEW \\
Surveyor _ \\
Location \\
Mode (circle one) Pier/Jetty & Private boat Party boat Beach
\end{tabular}
Nem SHOW REGIONAL MAP TO ANGLER
\[
\$ 4 \text { SHOW FISH MODEL TO ANGLER }
\]

I'd like to start by asking you for some information about your fishing experiences.

Q1. How many years have you fished between Santa Monica Pier and Seal Beach Pier? MAP

Q2. In the past year and including this trip, have you fished in this region from... mese
\begin{tabular}{|c|c|}
\hline 1 & a pier? \\
\hline 2 & a jetty? \\
\hline 3 & private boat? \\
\hline 4 & party boat? \\
\hline 5 & beach or intertidal zone? \\
\hline 6 & Any others? (specify) \\
\hline 8 & DON'T KNOW \\
\hline 9 & REFUSED \\
\hline
\end{tabular}

Now I'd like to ask you a few questions about the fish you or someone you know catch in this region. map

Q3. During the past four weeks, have you eaten fish caught in this region? masp
\begin{tabular}{|c|c|}
\hline 0 & \multirow[t]{4}{*}{\begin{tabular}{l}
NO (SKIP TO Q7) \\
YES \\
DON'T KNOW (SKIP \\
REFUSED (SKIP TO
\end{tabular}} \\
\hline 1 & \\
\hline & \\
\hline 9 & \\
\hline
\end{tabular}

Q4. During the past four weeks, how many times have you eaten fish caught in this region? Mat

Q5. What parts of the fish you catch do you usually eat? \(\propto\)
\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline 8 \\
\hline 9 \\
\hline
\end{tabular}

IF MORE THAN ONE ANSWER GIVEN FOR Q5, ASK: Q5a. Which way do you eat it most often?

Q6. For fish caught in this region ReAD, how much do you usually eat at any one time compared to this model?

\begin{tabular}{|l|l}
\hline 1 & \(\begin{array}{l}\text { About this amount } \\
\text { About half this amount } \\
2\end{array}\) \\
\hline 3 & About twice this amount
\end{tabular}
\begin{tabular}{|l|l}
\hline 3 & About twice this amount \\
\hline
\end{tabular}
Q7. Have you caught any fish today?

\begin{tabular}{|l|l}
\hline 0 & NO (SKIP TO 08) \\
\hline 1 & YES (SKI \\
\hline 9 & REFISI
\end{tabular}

Q7a. Did you throw any back?
\begin{tabular}{|l|l}
\hline 0 & NO (SKIP TO Q16) \\
YES (SKIP TO Q16) \\
\cline { 1 - 1 } & REFUSED (SKIP TO Q16 \\
\hline
\end{tabular}

Q8. May I see what you've caught today?


1 YES (SKIP TO Q9)
Q8a: May I ask why not?

TURN OVER AND COMPLETE FISH SURVEYS

Survey ID
Shift il \(\qquad\)
Next I'd like to ask you a few questions about health warnings regarding eating fish caught in this region. mas

Q21. Have you seen or heard any health warnings related to eating fish caught in this region? Mad
0 NO (SKIP TO 022)
\begin{tabular}{|l|l}
\hline 8 & DONT KNOW (SKIP TO 022 \\
REFUSED (SKIP TO 022) \\
\hline 9 & \\
\hline
\end{tabular}

Q21a. What did this warning say?
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Q21a. What did this warning say?} \\
\hline 1 & Do not eat White Croaker & 7 & Fish are contaminated \\
\hline 2 & Do mot eat Barred Sand Bass & 8 & Only eat small amounts \\
\hline 3 & Do mot eat Black Cranker & 9 & OTHER (specify) \\
\hline 4 & Do not eat Toprmelt & & \\
\hline 5 & Do not cat Barracuds & 88 & DONT KNOW \\
\hline 6 & Protect your healith & 99 & refused \\
\hline \multicolumn{4}{|l|}{Q21b. Where have you seen or heard this warning?} \\
\hline 1 & Television & 5 & Other (specify) \\
\hline 2 & Newspaper or magazine article & & \\
\hline 3 & Signs on the beaches or piers & 8 & DONT KNOW \\
\hline 4 & Other fishemxen or friends & 9 & REFUSED \\
\hline
\end{tabular}

Q21c. How has this warning changed your fishing or fish-eating habits?


Finally, I'd like to ask you a few questions about yourself. Remember that your answers will be kept strictly confidential.


Q23. Including yourself, how many people are currently living in your houschold?


Q24. In what year were you bom?
\(\left.\begin{array}{l}8 \\ \text { DON'T KNOw }\end{array}\right]=9\) refused


Q26. What is your race? (CHOOSE ALL THAT APPLY)
 White
Black or African American
Hispanic, Latino's, or Spanish
American Indian or Alaska Nativy
Asimn (specify)


(12 ific lslander (specify)

Samoan
Other Pacific slander (specify)
Other (specify) REFUSED

You may be asked to do another survey in the future. If we can connect today's answers to your future answers it improves our education efforts. Giving us your initials and birth date allows us to connect the answers without identifying you.


Thank you for taking the time to do this survey.
TURN OVER AND COMPLETE BOTTOM SECTION

Participant Questionnaire
NOTE: USE 8 TO DENOTE "DON'T KNOW"RESPONSES AND 9 TO DENOTE "REFUSED" RESPONSES
Bucket Count, Identification, and Behavior

\begin{tabular}{|c|c|c|c|c|c|}
\hline FOR EACH OF THE FISH TYPES ASK 016 - 020. & & & \(\bigcirc\) & & \\
\hline \begin{tabular}{l}
SKIP FISH TYPES THAT WERE IN ANGLER'S BUCKET. \\
Now I have a few questions about specific types of fish.
\end{tabular} &  &  &  &  &  \\
\hline Q16. Do you ever catch (SHOW PHOTO)? & & & & & \\
\hline Q17. In the past four weeks, how many times have you eaten this fish? & & & & & \\
\hline \begin{tabular}{l}
Q18. What do you usually do with this fish? \\
1 - Eat them \\
2 - Give away (IF Q17-0, SKIP TO NEXT FISH TYPE) \\
3 - Throw back (IF Q17-0, SKIP TO NEXT FISH TYPE) \\
4 - Bait (IF Q17-0, SKIP TO NEXT FISH TYPE) \\
5 - Other (specify) \\
(IF Q17-0, SKIP TO NEXT FISH TYPE)
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
Q19. What parts of the fish you catch do you usually eat? \\
1 - Whole with guts \\
2 - Whole without guts \\
3 - As steaks or fillets without the skin \\
4 - As steaks or fillets with the skin \\
5 - Other part(s) of fish (specify)
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
Q20. How much of this fish do you usually eat at any one time compared to this model? \\
1 - About this amount \\
2 - About half this amount \\
3 - About twice this amount \\
4 - More than twice this amount
\end{tabular} & & & & & \\
\hline
\end{tabular}

\section*{TURN OVER AND COMPLETE SECOND COLUMN}


\section*{Spanish Questionnaire}

mast MOSTRAR MAPA REGIONAL AL PESCADOR
MOSTRAR MODELO DE PEZ AL PESCADOR

Me gustaría comenzar por pediríe información sobre sus experiencias de pesca

P 1. ¿Cuántos años hace que pesca entre los muelles de Santa Mónica y Seal Beach? MAP

P2. En el año pasado, e incluido este viaje, , ha pescado en esta región desde... mos
\begin{tabular}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline 6 \\
\hline 8 \\
\hline 9 \\
\hline
\end{tabular}
        un muelle?
        un malecón?
        un bote privado?
        un bote de pesca de recreo?
        la playa o zona de intermareas?
        alguin otro sitio? (especifique)
        NO SABE
        NO SABE
        SE REHÚSA A RESPONDER

Ahora desearía hacerle algunas preguntas sobre los peces que usted o alguien que conozca atrapan en esta región. map

P 3. Durante las últimas cuatro semanas, iha comido alguna vez el pescado que capturado en esta región? Mae
\begin{tabular}{|c|c|c|}
\hline 0 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
NO (PASE A LAP 7) si \\
NO SABE (PASEAP 7 \\
SE REHÚSA A RESPO
\end{tabular}}} \\
\hline 1 & & \\
\hline 8 & & \\
\hline 9 & & \\
\hline
\end{tabular}

P4. Durante las últimas cuatro semanas, ¿cuintas veces ha comido pescado capturado en esta región? MAB
```

P5. iQué partes del pescado que captura come por lo general? \$
1 Entero, incluidas las visceras
Entero, sin las visceras
En filetes, sin piel
En filetes, sin piel
En filetes, con la piel
Otras partes (especifique)
NO SABE
SE REHÚSA A RESPONDER
SI SE BRINDÓ MÁS DE UNA RESPUESTA PARA P5, PREGUNTE: P 5a. ¿De qué forma lo come con más frecuencia?
P6. En cuanto a lo que se pesca en esta región, MAD ¿cuánto come por lo general en una comida, comparado con este modelo?

```

```

Alrededor de esta cantidad
Alrededor de la mitad de esta cantidad
Alrededor del doble de esta cantidad
Más del doble de esta cantided
P 7. ¿Ha pescado algo hoy?

```

```

1	Si (PASE A LA P 8)

SE REHÚSA A RESPONDER (PASE A P 16)
P7a. ¿Regresó alguno al agua?
$0 \quad$ NO (PASE A LAP 16)

1	Si (PASE A LA P 16)

SE REHÚSA A RESPONDER (PASE A P 16)
P 8. ¿Puede mostrarme lo que pescó hoy?

```

```

Si (PASE A P9)
P8a. ¿Puedo preguntar por quê no?

```
vuelva la pagina y complete las preguntas sobre la los Pescados

D de encuesta \(\qquad\) \(\mathrm{N}^{\text {o }}\) de turno:

A continuación desearía preguntarle sobre advertencias de salud relacionadas con comer pescado atrapado en esta región. Map

P21-iHa visto o oido alguna advertencia sobre salud relacionada con comer


P216. ¿En qué cambió esta advertencia sus häbitos de pesca o de comer pescado?


Por último, desearía hacerle unas preguntas sobre usted. Quiero recordarle que todas las respuestas que brinde gozaran de estricta confidencialidad.

P22. ¿Cuàl es sul código postal?


P 23. \({ }_{i}\) Cuintas personas viven en la actualidad en su hogar, incluido usted?
88 NO SABE 99 SE REHÓSA A RESPONDER
P24. ¿En qué ano nació? 8 NO SABE 9 SE REHÚSA A RESPONDER

P 25. ¿Es usted de origen hispano, latino o español?


P 26. ¡De qué origen es? (ELLAA TODAS LAS RESPUESTAS QUE CORRESPONDAN)

raza blanca
raza negra o afroamericana
hispano, latino oe espaniol
indoamericano o nativo de Alaska
asiático (especifique)
6
indoasiático

\begin{tabular}{|l|l}
\hline 7 & chino \\
\hline 8 & filipino \\
\hline
\end{tabular}
japonés \begin{tabular}{|l|l}
\hline 10 & coreano \\
\cline { 1 - 1 } & victnamita
\end{tabular}

 \begin{tabular}{|l|l}
\hline 16 & sameano
\end{tabular} 17 de otra isla del Pacifico (especifique)
 NO SABESE REHÚSA A RESPONDER
Usted puede pedir que haga otro estudio en el futuro. Si podemos conectar las respuestas de hoy a sus futras respuestas que mejora nuestros esfuerzos de educación. Dándonos sus iniciales y fecha de nacimiento nos permite conectar las respuestas, sin identificarlo.

Q27. ¿Cuales son las primeras letras de su nombre y apellido? \(8 \quad\) NO SABE 9 SE REHUSA A RESPONDER

Q28. Cuail es su fecha de nacimiento? 88/88/8888 NO SABE 999.99.9999 SE REHUSA A RESPONDER

Gracias por tomarse el tiempo para tomar este estudio.
vuelva la pagina y complete la seción inferior

Cuestionario de participantes

NOTA: UTILICE UN 8 PARA INDICAR QUE RESPONDE "NO SABE" Y UN 9 PARA INDICAR QUE "SE REHÚSA A RESPONDER"


vuelva la pagina y complete la segunda columna


\section*{Vietnamese Questionnaire}

Câu hỏi dành cho người tham gia
NGƯỚI KHÁO SÁT HOÅN THȦNH TRUỨC KHI PHÓNG VÁN Tên ngừ̛̀ khảo sát__ Ngày \(\qquad\) Gió
Bja diém
Phưong thérc (khoanh vào mơt lya chon)
bén tàu lcàu tàu thuyè̀n riêng thuyèn cûa nhóm bä̉ biền


Tôl xin được bất đà̀u hơi một số thơng tin về kinh nghiẹm đánh bât cá của quý vị.

CH 1. Quý vi đă đánh bât cá ờ khu vưc gị̂ra bén tầu Santa Monica và bến tầu Seal Beach được bao nhilàu nâm rồ? Gîe 00

CH 2. Trong năm qua và cả trong chuyến đii này quý vil đả tùng đánh bát trong khu vưc này từ... Raw no
 bên tàu? any riên thuyên cùa nhóm?
bail biến hoạc vùng liên trieu?
Khu vưc nào khác? (cu thế) KHÔNG BIET
TỨ CHOI TRÁ LÓI
Bây giờ tồ muốn hờ quý vị về mớt số thông tin về loàl cá mà quý vị hoắc người mà quý vị biết đả đảnh bát được trong khu vực này. BiNoO

CH 3. Trong bơn tual̉n qua, quý vi đã tù̀ng àn cá đánh bât được trong khu vưc này chura? Bow 00
\begin{tabular}{|c|c|}
\hline 0 & KHÔNG (CHUYEN QUA CH 7) \\
\hline 1 & CO \\
\hline 8 & KHÔNG BIET (CHUYEN QUA CH 7) \\
\hline 9 & TỬ CHOI TRẢ LỚl (CHUYÉN QUA CH 7) \\
\hline
\end{tabular}

CH4. Trong bón tuần qua, quý vi đă ân cá đánh bát được trong khu vự này bao nhiláu lần? BAN00
\(\mathbf{C H} 5\). Quý vi thường ăn những bợ phận nào của cá đả đánh bất đưoc? कौ


Toàn bợ con cá kể cả ruột
Toàn bớ con cá trừ ruôt
át cá hoạc khúc cá khờng oo da át cá hoạc khúc cá có da
Các phàn khác cula con cá (cu the \(\qquad\)
\(\qquad\) TỬ CHOI TRÁ LÓn

NÉU QUÝ VI CO TỨ MƠT ĐÁP ÁN TRỚ LÊN VỚl CH 5 THi TRẢ LỜI THÊM CẢU HÓI SAU:
CH 5a. Quỳ vi hay ăn cà theo cách nào nhát?


\begin{tabular}{|c|c|}
\hline 1 & Mợt lurơng bàng khoảng lưọng nhur thêt nay \\
\hline 2 & Một lurơng bàng nưa lương như thé nay \\
\hline 3 & Mợ lương khoàng gatp hai làn lương nhu thé này \\
\hline & \\
\hline
\end{tabular}

CH7. Hôm nay qự vi dā bát durọc con cá nào chura?
 CHUA
ROI (CHUYÉN OUA CH 8) TỪ CHÓI TRÁ LỚI (CHUYEN QUA CH 16)

CH7a. Quý vi có vút bỏ ląi con cá nào khơng?


CH8. TOi col the xem quy vi đà bát đunge gi trong ngày hờm nay không? 0 KHÓNG
\(\square\) CÓ (CHUYEN QUA CH 9 )

CH8a: Tôl có thế biét vi sao quý vị khờng bát được con cá nào không?

LAT SANG VÀ TRÁ LỜI NƠT PHÂN KHÅO SÅT VE CÁ

Survey ID \(\qquad\)
Shift il \(\qquad\) -

Tí́p theo tồ muốn hòl quý vị mệt só câu hòl về nhông cành báo về sức choé có lièn quan đền việc ân câ đă đành bát đưoc trong khu wue này. \begin{tabular}{|l|l|}
\hline khoe co \\
\hline BAN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{CH21. Quý yụ đas aìng nhin tháy hoêc nghe tháy bát cừ các cȧnh báo vê sicc} \\
\hline \multicolumn{6}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Chus (CHUYEN OUA CH 22) ©}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
KHÓNG BIET (CHUYEN QUA CH 22) \\
TỨ CHOO TRA LÓn (CHUYEN OUA CH 22)
\end{tabular}}} \\
\hline 1 & & & & & \\
\hline \multicolumn{6}{|l|}{CH 21.2. Nhû̀ng cảnh báo đó nól gi?} \\
\hline 1 & \multicolumn{2}{|l|}{Không đurgc an ca lô đô tráng} & 7 & \multicolumn{2}{|l|}{Ca bio ó nhiừm} \\
\hline 2 & \multicolumn{2}{|l|}{Khỏng dunơe ăn cá vurơe cát vân} & 8 & \multicolumn{2}{|l|}{Chilan mot it} \\
\hline 3 & \multicolumn{5}{|l|}{Khỏng ăn đurọe cá lư đủ den} \\
\hline 4 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Không an cé nhờng}} & & & \\
\hline 5 & & & 88 & \multicolumn{2}{|l|}{KHONG BIÉT} \\
\hline 6 & \multicolumn{2}{|l|}{Báo vệ sứrct khóe của quý vi} & 99 & CHOA TRALOÓI & \\
\hline \multicolumn{6}{|l|}{CH 21b. Quy y ula tìng nhin tháy hay nghe tháy cành báo này do đâu?} \\
\hline 1 & Tivi & & 5 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Khác (cut thé)}} \\
\hline 2 & \multicolumn{3}{|l|}{Báo hoéc tep chi} & & \\
\hline 3 & \multicolumn{3}{|l|}{Biến bào trân bờ biến hoạc bến tâu 8} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{KHONG BIET}} \\
\hline 4 & Thơ bát cá khác/hoặc & bap be & & & \\
\hline
\end{tabular}

CH 21c. Cânh báo nảy đã thay đó̉i thói quen dánh bát hoặc thói quen ãn cá cùa quý vi nhur thé nào?


Cuoói cùng, tôi xin được hói quŷ vị một sô cảu hói vè chinh quỳ vị. Tôi muốn nhác lại là tát cà các câu trà lốl mà quý vị đưa ra đều đurợc giọ bi mओ̀t tuỵ̂t đól.
CH 22. zip code của quỳ vi là gi? \(\qquad\) 99999 KHONG TRA LO
 quy vi? 8 KHÓNG BIET 9 TỨ CHÓ TRÁ LÓ

CH 24. Quỳ ví sinh năm nào?
24. Quy M sinh nám nào
\(8 \quad\) KHONG BIET

9 TU் CHOI TRA LÓn
CH 25. Quý vico nguòn góc là người tò̀ Hispanic, Latinola, hay Tay Ban Nha khong?


CH 26. Chüng tộc cỉa quý vilà? (CHON TAT CÁ MUC PHỒ HOPP)
 Da tráng
2 Da den hoăc ngưài Mỹ góc Phi

\begin{tabular}{c} 
Chen \(A\) ( cu the \()\) \\
6 \\
\hline 1
\end{tabular}
\begin{tabular}{|l|l|}
\hline 6 & \(\begin{array}{l}\text { An } \\
\text { Trung } \\
\text { Tran } \\
\text { Phipin }\end{array}\) \\
\hline 8 & Nhat \\
\hline
\end{tabular} Nhat Hàn Quóc

\(\qquad\)

Bác có thế sề làm một khào sát khác trong tưòng lai. Nếu chúng tời có thé liền kết cảc câu trà lời hôm nay vớl các câu trà lờ trong tủòng lai thì kiến thức cùa chứng tôl sè tót hòn. Bác cho tên tât và ngày sinh đê chúng tồ có thê liền kết các cầu trà lời mà không phà nhận diện bác.

Q27. Chơ đầu tîn cùa tền và ho?


Q28. Ngày sinh cúa bác là gii ?
88/88/8888 KHONG BIET 99/99N9999 TỜ CHOI TRA LỚ

Càm òn bác đả đế thi giớ trà lời cự̂c khào sát này.

LAT SANG VÀ TRẢ LỚI NOTT PHAN CUÓI

Câu hỏi dành cho người tham gia


\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \(>\) & 3 & \(\bigcirc\) & \(\square\) & m \\
\hline BỎ QUA NHỠNG LOÅ CÁ ĐÃ CÓ TRONG THÙNG CỦA NGƯỜI CẢU. Bây giờ tô̂i xin đưa ra một số cẩu hōi về các loại cá cụ thể. &  & \[
\begin{aligned}
& \text { a } \\
& \text { = } \\
& \text { 学 }
\end{aligned}
\] &  & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
\stackrel{e}{E} \\
\stackrel{E}{E} \\
0
\end{array}
\] \\
\hline CH 16. Quý vị đâ từng bắt (Cho xem ành)? & & & & & \\
\hline CH 17. Trong bốn tuần qua, quy vị đâ ăn loại câ này bao nhiêu lần? & & & & & \\
\hline \begin{tabular}{l}
CH 18. Quý vị thường làm gì với loại cá nảy? \\
\(1-\tilde{A}_{n}\) \\
2 - Vút đi (NĖU CH 17-0, CHUYÊN QUA LOAI CẢ TIÉP THEO) \\
3 - Vút trả lai (NĖU CH 17-0, CHUYEN QUA LOAI CA TIEP THEO) \\
4 - Làm mồi câu (NÉU CH 17-0, CHUYEN QUA LOAI CA TIEP THEO) \\
5 - Khác (cu thè) \(\qquad\) (NÉU CH 17-0, CHUYEN QUA LOAL CÁ TIÉP THEO)
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
CH 19. Quý vị thường ăn nhừng phà̀n nào của con cá đã đảnh bắt đượ? \\
1 - Toản bồ con cá kể cà ruồt \\
2 - Toản bô con cá trù̀ ruôt \\
3 - Lát cá hoụ̣c khúc cá không có da \\
4 - Lát cá hoăc khúc cá có da \\
5 - Nhùng phẳn khác cuua con cá (cụ thé) \(\qquad\)
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
CH 20. Mời lằn ăn bất kỳ, quý vị thường ăn bao nhiếu mới lằn so với lượng dươi đây? \\
1 - Một lượng khoàng bằng lượng như thế này \\
2 - Mô̂t lượng khoảng một nưa lự̛̣ng như thế nảy \\
3 - Môt lượg khoảng gấp hai lẩn lương như thê này \\
4 - Mốt lương nhièu hơn gấp hai lần lương nhu thê này
\end{tabular} & & & & & \\
\hline
\end{tabular}

LAT SANG VÀ HOÀN TÃT CỌT THỨ HAI


\section*{Chinese Questionnaire}








周願



\begin{tabular}{|l|l|}
\hline 1 & 白相人 \\
\hline 2 & 黑人或非南关國人 \\
\hline
\end{tabular}


6 印度人
7 年人

10 镜国人

\(\qquad\)

14 夕風夷夷隹住民






\(\qquad\)糧笿
Q28．济問管的生日奐出生年好？ 88／888888 不知道 89999999

請翻面填寫底下部分

\section*{点奥者問訄調查}

注意：以 8 代表回答「不知道」， 9 代表「拒答」

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
就每一種類型的魚，請訽問問题 \(16-20\) 。跳過钓客魚桶中魚的類型。 \\
現在，线將詢問幾個舆特定颣型魚有䦕的間題。
\end{tabular} & \[
\begin{aligned}
& > \\
& \text { 파 } \\
& \text { 哴 }
\end{aligned}
\] &  &  & \[
\begin{aligned}
& 0 \\
& \text { 落 } \\
& \text { - }
\end{aligned}
\] & \[
\begin{aligned}
& m \\
& \text { 選 } \\
& \text { 哳 }
\end{aligned}
\] \\
\hline  & & & & & \\
\hline 同题 17．在過去四個星期中，㤵吃適浐種鮘幾次？ & & & & & \\
\hline \begin{tabular}{l}
問题18．伤通常如何感理通種焦？ \\
1－吃掉 \\
2 －送人（如果周但 \(17-0\) ，跳至下一種類型的魚） \\
\(3-\) 放回水中（如果周越 \(17=0\) ，睛跳至下一種鮘型，跳至下一種類型的色） \\
4 －當做魚值（如果問造 17－0，跳至下一種類型的魚） \\
5 －其他（請註明） \(\qquad\) （加果間题 \\
17－0，跳至下一楮頑等的魚）
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
問題 19．㤵釣到的您您通常貣用哪些部位？ \\
1 －整佲魚，含內開 \\
2－整條魚，不含內险 \\
3 －去皮的焦柳和魚片 \\
4－带皮的魚柳和魚片 \\
5 －焦的其他部位（請註明）
\end{tabular} & & & & & \\
\hline \begin{tabular}{l}
間通 20．拿䞠個梗型做比較，您通常一次貣用多少崌種您？ \\
1 －大約這估数量 \\
2－大約道倬数量的一半 \\
\(3-\) 大約道估数量的兩倍 \\
4 －大約這估数量的兩倍以上
\end{tabular} & & & & & \\
\hline
\end{tabular}

\section*{請翻面填寫第二䀳}

\section*{}

S 2 ．䃁言 \(\qquad\)英話
\(\qquad\)女性－不用

S3．受助者䊀間题的理解程定？
S4．受勒者的專注程度？茜班身話 \(\qquad\)越南諎 \(\qquad\)塔加洛話 \(\qquad\)准束話 中文
\(\qquad\)非常理繙 \(\qquad\)有些理解 \(\qquad\)完全不理解

S 5 ．受勒者的配合程度？
\(\qquad\)非营專注 \(\qquad\)有些専注 —完全不専注非常㗐合有些配合完全不配合

\section*{Tagalog Questionnaire}


T21k. Paano nabago nang babala na ito ang iyong pangingisda o asal sa pagkain ng isd2?


Sa wakas, nais kong magtanong saiyo ang ilang mga katanungan tungkol sa byong sarili. Nais kong ipaalala saiyo na lahat ng mga sagot na iyong ibibigay ay mahigpit na pananatilihing kumpidensiyal.
T22. Ano ang iyong zip code?
88888 HINDI KO ALAM 99999 TUMATANGGI

T23. Kabilang ang iyong sarili, ilang tao ang kasalukuyang nakatira saiyong taharan?
\(88 \quad\) HINDI KO ALAM \(99 \quad\) TUMATANGGI
T24. Ancog taon ka ipinangamak?


T25. Kayo ba ay Hispaniko, Latino o Espanyol?


T26. Ano ang iyong lahi? (PILIIN ANG LAHAT NA NAAANGKOP)


Thim o Aprikano Amerikano
Hispaniko, Latinofa, o Espanyol
Indiyano Amerikano o Katutubong Alaska
Asyano (tukuyin)
\begin{tabular}{|l|l}
6 \\
7 & Asigano Indiyano \\
Tsino
\end{tabular}


Filipin Hapon Koreano Vietnamese
Tha rang Asy Iba pang Asyano (tukuyin)


Pasipikang tagz-isla (tukuyin) Katutubong Hawayan
Guamanyan o Kansoro Samoseno
lbang pang pasipikong taga-ish (tukuyin)
lba pa (twkuyin) HINDI KO ALAM tumangal

Sa hinaharap, baka kayo are hihilingan nang ibang survey. Kung pwede naming maugnay ang inyong sagot ngayon at sa hinarap na survey, ito ay makakapabuti sa aming karunungan. Sa pagbibigay ng unang letra ng inyong pangalan at apelyido, pat ang buwan at petsa ng inyong kapanganakaan ito ay magbibigay. daan para maikonekta naming ang inyong sagot at walang gamit na palatandaan.
Q27. Ano ang unang letra nang inyong pangalan at apelyido?
8 HINDI KO ALAM

Q28. Ano ang petsa nang inyong kapanganakaan?

Salamat sa oras no inyong ipinaglaan para sa survey.

Palatanungan ng Kalahok
TANDAAN: GAMITIN ANG 8 UPANG MAGPAKAHULUGAN NA "HINDI ALAM" ang SAGOT AT 9 UPANG MAGPAKAHIILIIGAN NA "TINATANGGIHAN" ANG SAGOT


4-Higit sa dalawa ng dami nito

\section*{IBALIK AT KUMPLETUHIN ANG PANGALAWANG HANAY}


\section*{APPENDIX C}

\section*{SHIFT SUMMARY SHEET/REFUSAL LOG}

\section*{Shift Summary Sheet/Refusal Log}

SGA
Shift \# \(\qquad\)
EPA Seafood Consumption

\section*{Shift Summary Sheet}

Date: \(\qquad\) Surveyor 1: \(\qquad\) Surveyor 2: \(\qquad\)
Location: \(\qquad\)
\begin{tabular}{|l|l|l|l|l|}
\hline Mode: & Pier/Jetty & Party Boat & Private Boat & Beach \\
\hline Region: & Central Bay & South Bay & L.A. Harbor & Long Beach \\
\hline Time Period: & & \begin{tabular}{c} 
Morning \\
\(8: 00 \mathrm{am}-12: 00 \mathrm{pm}\)
\end{tabular} & \begin{tabular}{c} 
Afternoon \\
\(12: 00 \mathrm{pm}-4: 00 \mathrm{pm}\)
\end{tabular} & \begin{tabular}{c} 
Evening \\
\(4: 00 \mathrm{pm}-8: 00 \mathrm{pm}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Not Qualified & Male & Female \\
\hline \begin{tabular}{l} 
Persons not qualified due to \\
having already done survey
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Refusals} \\
\hline Male & Female & Reason & Notes \\
\hline & & Language & \\
\hline & & No Time & \\
\hline & & Not Interested & \\
\hline & & Unknown & \\
\hline Total: & Total: & & \\
\hline
\end{tabular}

\section*{Shift End Checklist}Shift Summary SheetCensus
Seafood Consumption Surveys

\section*{Total Surveys Completed}

Surveyor 1 \(\qquad\)
Surveyor 2 \(\qquad\)
TOTAL \(\qquad\)

\section*{APPENDIX D}

\section*{bEAUFORT SEA STATE SCALE}

\section*{Beaufort Sea State Scale}

\section*{The Beaufort Sea State Scale}


\section*{APPENDIX E}

\section*{CENSUS SHEET}

\section*{Census Sheet}

SGA
Shift \# \(\qquad\)
EPA Seafood Consumption

\section*{Census}

CONDUCT CENSUS AT SITE PRIOR TO ADMINISTERING ANGLER SURVEYS

\section*{Site Characteristics}

Date: \(\qquad\) Surveyor 1: \(\qquad\) Surveyor 2: \(\qquad\)
Location: \(\qquad\)
\begin{tabular}{|l|l|l|l|l|}
\hline Mode: & Pier/Jetty & Private Boat & Party Boat & Beach \\
\hline Region: & Central Bay & South Bay & L.A. Harbor & Long Beach \\
\hline Time Period: & & \begin{tabular}{c} 
Morning \\
\(8: 00 \mathrm{am}-12: 00 \mathrm{pm}\)
\end{tabular} & \begin{tabular}{c} 
Afternoon \\
\(12: 00 \mathrm{pm}-4: 00 \mathrm{pm}\)
\end{tabular} & \begin{tabular}{c} 
Evening \\
\(4: 00 \mathrm{pm}-8: 00 \mathrm{pm}\)
\end{tabular} \\
\hline
\end{tabular}

Start Temperature: \(\qquad\) F

End Temperature: \(\qquad\)

Weather Conditions:
(circle all that apply)


Sea State (refer to Beaufort Sea Scale; select number corresponding to observed state): \(\qquad\)
Additional Observations (record site characteristics which may be a factor in current angler foot traffic; select all that apply).
\(\qquad\) Red Tide
\(\qquad\) Heavy Storm on the Previous Day
\(\qquad\) Large Community Event or Festival
\(\qquad\) Other (describe):

\section*{Basic Demtographic Characteristics of the Ohserved Fishing Population}

How many anglers are present in this location? (an angler is defined as any person at the site who is carrying fishing tackle; do not include children; count anglers starting at your left, then going clockwise; do not include anglers coming or going)

How many anglers are of each gender?
\(\qquad\) Male
\(\qquad\) Female
\(\qquad\) Unknown

\section*{APPENDIX F}

\section*{REGIONAL MAP AND MSRP FISH ID CARD}

Appendix F

\section*{Map}


MSRP Fish ID Card


\section*{1 What are DDTs and PCBs?}

DDTs and PCBs are toxic mixtures of chemicals that break down very slowly in the environment.

DDT was once a widely used pesticide. One of the largest DDT factories in the United States, Montrose Chemical Corporation, was located in Torrance, CA.

PCBs are a group of chemicals that are resistant to heat and pressure. They were used by many companies for things like making paints and cooling electrical parts.

3 What is being done?
Cleaning up the environment
The U.S. Environmental Protection Agency (EPA) is studying ways to cap, clean or remove the contaminated sediments. For more information, visit www.epa.gov/region9/features/pvshelf/, or call (800) 231-3075.

\section*{Survey of contaminated fish}

The Montrose Settlements Restoration
Program (MSRP) and EPA conducted an extensive survey of contaminated fish along southern California. Results will be provided to the public and will be used to update local fishing advisories and the white croaker commercial catch ban area. The data will also be used to plan restoration projects, and will serve as a basis for EPA cleanup decisions.

Public outreach and education
MSRP has joined with EPA, government
health agencies, and local community groups to give the public accurate information about the contaminated fish in the Los Angeles- Orange County area. Find out more at www.pvsfish.org or by calling (800) 231-3075.

\section*{Restoring healthier fishing}

MSRP has developed several projects to provide anglers with more opportunities to fish for clean fish. Find out more at www.montroserestoration.gov or by calling (562) 980-3236.

2 Where did they come from?
Most of the DDTs and PCBs contaminating the marine environment near Los Angeles came from companies that dumped their waste products into the local sewer system many years ago.

Wastewater from these factories was discharged into the ocean through outfall pipes offshore of White Point, between San Pedro and Palos Verdes.

Although releases of DDTs and PCBs ended in the 1970s, over 100 tons of these chemicals still contaminate the sediments, water, and living organisms of Southern California.

\section*{What can I do?}

Reduce your exposure to DDTs and PCBs!

\section*{Fish Smart!}

Some of the common fish along the Los Angeles and Orange county coasts are contaminated with the toxic chemicals DDTs and PCBs. The State of California has issued advisories to limit consumption of certain species in parts of the coast.
- Use this card to know the fish you catch.
- Look for signs posted at local piers.
- Talk to the members of community groups distributing information about contaminated fish at fishing areas, health clinics, and community events.
- Visit www.oehha.ca.gov/fish.html. The Office of Environmental Health Hazard Assessment offers information in English and in many other languages.

\section*{Cook Smart!}

DDTs and PCBs build up in the fatty parts of fish. Try to cook in ways that reduce your exposure to these chemicals.
- Before cooking, remove and throw away the head, guts, kidneys, liver, skin, fat and belly area.
- Eat only the filet, especially when making soups, stews or chowder.
- Bake, broil, steam or grill fish, instead of frying.
- Throw away the cooking juices, which can contain higher concentrations of these chemicals.

\section*{Eat only the filet!} ervironment. Projects include efforts to restore bald eagles, peregrine fakons, seabirds, fishing, and fish habitat. The agencies include the National Oceanic and Atmospheric Administration, U.S. Fish\& Widlife Service, National Park Service, Callifomia Department of Fish and Game, Califomia State Parks, and the Califomia State Lands Commission.

\section*{APPENDIX G}

FISH MODEL

Appendix G

Fish Model


Fillet


\section*{APPENDIX H}

FISH IDENTIFICATION CHART

\section*{Appendix H}

Fish Identification Chart
\begin{tabular}{|c|c|}
\hline  & White croaker, Genyonemus lineatus, mouth is subterminal, barbels not present. Narrow notch between spiny and soft ray dorsal fins. Small black spot usually present at base of pectoral fins. Bronze to goiden coloration on the dorsal surface, white belly. Common throughout southern CA waters, into northern CA. To 16 in., but most caught on piers are 10-12 inches. May occur with queenfish (see below). Very common. \\
\hline  & Queenfish, Seriphus politus, large mouth that is terminal. Base of dorsal and anal fin about equal lengths. Spiny and soft ray dorsal fins widely separated. Bluish to bronze on the donsal surface, white belly. Common throughout southem CA waters, into northern CA. To 12 in.. May occur with white croaker (see above). Very common. \\
\hline  & Top smelt (Atherinopsis affinis) and lack smelt (Atherinopsis californiensis). Two of the 3 silverside species likely to be encountered. Slimmer than the croakers (above) with a prominent stripe that ruins taterally along the body. Up \(1 / 17\) in., and can be very common in southes,, , 8 ? waters around piers and jett \\
\hline  & Yellowfin croaker, Umbih: \(\}\) similar to white croaker, ty y croaker have yellowish finfang along the body. The best çaracter: fish is frozen/dead, is the barbcl on the chin. White common throughout soctiem CA, these fish are occasionally caught hoin piers. They are more commonly caught in the surf. May grow to 20 in . and are highly prized both for sport and table fare. \\
\hline
\end{tabular}


\section*{APPENDIX I}

\section*{LANGUAGE IDENTIFICATION CARD}

\section*{Language Identification Card}


\section*{APPENDIX J}

\section*{SURVEY ADMINISTRATION TOOLS: MESSENGER BAG, GLOVES \& TAPE MEASURE}

Appendix J

\section*{Messenger Bag}


\section*{Gloves}

Tape Measurer


\section*{APPENDIX K}

TIP CARD IN ENGLISH, SPANISH, VIETNAMESE, CHINESE AND TAGALOG

\section*{Tip Card in English}


\section*{Tip Card in Spanish}


\section*{Tip Card in Vietnamese}


\section*{Tip Card in Chinese}


\section*{APPENDIX L}

\title{
KEY VARIABLES BY QUESTION NUMBER: FISH CONSUMPTION PATTERNS \& AWARENESS OF ADVISORY
}

Key Variables by Question Number: Fish Consumption Patterns \& Awareness of Advisory
\begin{tabular}{|c|c|c|}
\hline Construct & Variable Name & Variable Label \\
\hline \multicolumn{3}{|l|}{The following variables allow for data collection management (including quality control), and measurement of seasonal and mode effects:} \\
\hline & sur_ID & Survey ID \\
\hline & shift_\# & Shift \# \\
\hline & surveyor & Surveyor \\
\hline & sur_date & Date of survey \\
\hline & sur_time & Time of survey \\
\hline Survey identifiers & location & Location \\
\hline Mode of fishing & mode & Mode \\
\hline \multicolumn{3}{|l|}{The following variables allow for characterization of fishing populations by age, sex, ethnic composition, what language interview was conducted in, zipcode and number of family members} \\
\hline \multicolumn{3}{|l|}{living in same household:} \\
\hline Age & Q24 & In what year were you born? \\
\hline Gender & S1 & Gender \\
\hline \multirow[t]{5}{*}{Race} & Q25 & Are you of Hispanic, Latino/a, or Spanish origin? \\
\hline & & What is your race? -White, Black or African American, Hispanic, Latino/a, or Spanish, American Indian or Alaska \\
\hline & & Native, Asian (specify), Asian -Asian Indian, Asian -Chinese, Asian -Filipino, Asian -Japanese, Asian -Korean, Asian \\
\hline & & -Vietnamese, Asian -other (specify), Pacific Islander (specify), Pacific Islander -Native Hawaiian, Pacific Islander - \\
\hline & Q26 1 to Q26 99 & Guamanian or Chamorro, Pacific Islander -Samoan, Pacific Islander -other (specify), other (specify), don't know, \\
\hline \multicolumn{3}{|l|}{Language interview was conducted} \\
\hline in & S2 & Language- English, Spanish, Vietnamese, Tagalog, Cantonese, Mandarin \\
\hline Zipcode & Q22 & What is your zipcode? \\
\hline \multicolumn{3}{|l|}{Number of family members living} \\
\hline the same household & Q23 & Including yourself, how many people are currently living in your household? \\
\hline \multicolumn{3}{|l|}{The following variables measure duration of exposure, mode type in the past year, consumption frequency, and consumption habits:} \\
\hline \multirow[t]{2}{*}{Duration of exposure} & Q1 & How many years have you fished between Santa Monica Pier and Seal Beach Pier? \\
\hline & & In the past year and including this trip, have you fished in this region from a...pier, jetty, private boat, party boat, \\
\hline Mode of fishing & Q2_1 to Q2_9 & beach or intertidal zone, other (specify), don't know, refused \\
\hline Consumption frequency & Q3 & During the past four weeks, have you eaten fish caught in this region? \\
\hline \multirow[t]{2}{*}{Consumption frequency} & Q4 & During the past four weeks, how many times have you eaten fish caught in this region? \\
\hline & & What parts of the fish you catch do you usually eat? whole with guts, whole without guts, as steaks or fillets without \\
\hline Consumption of fish parts & Q5_1 to Q5_5 & the skin, as steaks or fillets with the skin, other part(s) of fish, don't know, refused \\
\hline Consumption of fish parts & Q5_a & Which way do you eat it most often? \\
\hline Portion size & Q6 & For fish caught in this region, how much do you usually eat at any one time compared to this model? \\
\hline \multicolumn{3}{|l|}{The following variables allow for measurement of the types of species caught and consumption habits:} \\
\hline \multicolumn{3}{|l|}{Survey instructions: Repeat Q9_FISH thru Q15 for each type of fish in angler's bucket, changing final letter as needed. For example, Q9_FISH_A thru Q15_A refer to the first fish type, Q9_FISH_B thru Q15_B refer to the second fish type, etc.} \\
\hline Fish type caught & Q9_FISH_A & Name of fish type \\
\hline Fish quantity & Q9_A & Number of fish in possession \\
\hline Fish quantity & Q10_A & Total length of fish in inches \\
\hline
\end{tabular}

\section*{Appendix L}
\begin{tabular}{|c|c|c|}
\hline Fish type named & Q11_A & What do you call this fish? \\
\hline Fish type named & Q11_A_Fish & Specify incorrect fish name \\
\hline Frequency of consumption & Q12_A & In the past four weeks, how many times have you eaten this fish? \\
\hline What is done with fish & Q13_A & What do you usually do with this fish? \\
\hline Consumption of fish parts & Q14_A & What parts of the fish you catch do you usually eat? \\
\hline Portion size & Q15_A & How much of this fish do you eat at any one time compared to this model? \\
\hline \multicolumn{3}{|l|}{The following variables allow for measurement of catch habits and consumption of the species of concern:} \\
\hline \multicolumn{3}{|l|}{Survey instructions: Repeat Q16 thru Q20 for each type of fish not in angler's bucket, changing final letter as needed. Q16_A thru Q20_A refer to White Croaker, Q16_B thru} \\
\hline \multicolumn{3}{|l|}{Q20_B refer to Barred Sand Bass, Q16_C thru Q20_C refer to Topsmelt, Q16_D thru Q20_D refer to Barracuda, and Q16_E thru Q20_E refer to Black Croaker.} \\
\hline Fish type & Q16_A & Do you ever catch (FISH TYPE)? \\
\hline Frequency of consumption & Q17_A & In the past four weeks, how many times have you eaten this fish? \\
\hline What is done with fish & Q18_A & What do you usually do with this fish? \\
\hline Consumption of fish parts & Q19_A & What parts of the fish you catch do you usually eat? \\
\hline Portion size & Q20_A & How much of this fish do you usually eat at any one time compared to this model? \\
\hline \multicolumn{3}{|l|}{The following variables allow for measurement of awareness of the warnings and behavior:} \\
\hline & Q21 & Have you seen or heard any health warnings related to eating fish caught in this region? \\
\hline & Q21a_1 to & What did this warning say? Do not eat . . . White Croaker, Barred Sand Bass, Black Croaker, Topsmelt, Barracuda, \\
\hline & Q21a_99 & Protect your health, Fish are contaminated, Only eat small amounts, other, don't know, refused \\
\hline \multirow{3}{*}{Warnings awareness} & & Where have you seen or heard this warning? Television, newspaper or magazine article, signs posted on the beaches \\
\hline & Q21b_1 to Q21b_9 & or piers, other fishermen and/or friends, other (specify), don't know, refused \\
\hline & Q21c & How has this warning changed your fishing or fish-eating habits? [open-ended text] \\
\hline Warnings awareness & Q21d & Do you think these warnings are... very important, important, somewhat important, not important, don't know, refused \\
\hline
\end{tabular}

\section*{APPENDIX M}

\section*{DATA TABIES FOR SECTION 5 RESULTS}

\section*{List of Tables}
\begin{tabular}{|c|c|}
\hline Table 1 & Seasonal collection days (per each of the four modes) \\
\hline Table 2 & Angler rationale for declining to be interviewed by fishing mode \\
\hline Table 3 & Margin of error for each fishing mode \\
\hline Table 4 & Population level angler characteristics \\
\hline Table 5 & Interview mode across summer and non-summer months \\
\hline Table 5.a.* & Percentage of Interviews Conducted By Time of Year \\
\hline Table 6 & Angler rationale for declining to be interviewed by fishing mode \\
\hline Table 7 & Angler ethnicity \\
\hline Table 8 & Ethnic breakdown for angler identifying as Asian \\
\hline Table 9 & Language used during interview \\
\hline Table 10 & Mode of fishing in the past year by mode at time of interview \\
\hline Table 10. a.* & Percentage of Interviews Conducted Across Fishing Mode \\
\hline Table 11 & Percentage of anglers who reported catching fish and had their catch identified by mode \\
\hline Table 11.a.* & Percentage of Anglers who Fished at Various Fishing Modes over the Past Year \\
\hline Table 12 & Number of anglers with specific fish species by season \\
\hline Table 13 & Angler common names for identified fish species \\
\hline Table 14 & Fate of fish from angler's bucket by species \\
\hline Table 14.a.* & Fish Species Observed in Angler's Bucket \\
\hline Table 15 & Fish consumption by part and angler ethnicity \\
\hline Table 15.a.* & Fish Consumption Four Weeks Prior to Survey by Part \\
\hline Table 16 & Reported consumption among anglers in the study region \\
\hline Table 17 & Quantitative measure of fish consumption by ethnicity \\
\hline Table 18 & Fate of DNC fish for all anglers \\
\hline Table 18.a.* & Fate of DNC for Anglers Who Did Not Have Species in their Bucket \\
\hline Table 18.b.* & Fate of DNC fish for Anglers Who have Species in their \\
\hline Table 19 & Fish consumption by angler ethnicity \\
\hline Table 19.a.* & Anglers who Consumed Any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity \\
\hline Table 19.b.* & Anglers who Consumed Any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity - Piers and Jetties \\
\hline Table 19.c.* & Anglers who Consumed any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity - Private Boats \\
\hline Table 19.d.* Table 19.e.* & Anglers who Consumed any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity - Party Boats Anglers who Consumed any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity - Beaches and Intertidal Zones \\
\hline Table 19.f.* & Percentage of Anglers Who Have Consumed Each of the DNC Fish in the Four Weeks Prior to Survey \\
\hline Table 20 & Reported fish preparation methods for consumption of DNC fish \\
\hline Table 21 & Quantitative measure of fish consumption of the five DNC fish \\
\hline Table 21.a.* & Quantitative Measure of Fish Consumption of the Five DNC Fish by White Race \\
\hline Table 21.b.* & Quantitative Measure of Fish Consumption of the Five DNC Fish by Black or African-American Race \\
\hline Table 21.c.* & Quantitative Measure of Fish Consumption of the Five DNC Fish by Hispanic or Latino Race \\
\hline Table 21.d.* & Quantitative Measure of Fish Consumption of the Five DNC Fish by American- Indian or Alaska-Native Race \\
\hline Table 21.e.* & Quantitative Measure of Fish Consumption of the Five DNC Fish by Asian Race \\
\hline Table 21.f.* & Quantitative Measure of Fish Consumption of the Five Fish of Interest by Pacific Islander Race \\
\hline Table 21.g.* & Quantitative Measure of Fish Consumption of the Five Fish of Interest by Mixed Race \\
\hline Table 22 & Quantitative measure of fish consumption by mode \\
\hline Table 23 & Comparison across Seafood Consumption Studies 1994 vs. 2014 \\
\hline Table 24 & Comparison of Palos Verdes Shelf vs San Francisco consumption report \\
\hline Table 25* & Advisory Awareness and Behavior Change by Ethnicity and Mode \\
\hline Table 25.a.* & Importance of Warnings by Ethnicity and Fishing Mode \\
\hline Table 25.b.* & Importance of the Warnings \\
\hline Table 25.c.* & Percentage of Anglers Who Had Seen or Heard any Health Advisory Warnings \\
\hline Table 25.d.* & Awareness of What the Warning Said \\
\hline Table 25.e.* & Where Anglers had Seen or Heard the Warnings \\
\hline Table 25.f.* & How Anglers Changed Fishing or Fish-eating Habits \\
\hline
\end{tabular}

\footnotetext{
* Tables that were not included in final report
}

Appendix \(M\) includes every table referenced in the report in the same order for ease of reference. It also includes additional tables not included in the report because the findings did not rise to the level of statistical significance.

Table 1. Seasonal survey collection days (per each of the four modes).
\begin{tabular}{|cc|}
\hline Summer (May - Aug) & Non-Summer (Sept - Apr) \\
\hline \(2 /\) month & \(1 /\) month \\
\((8\) total sessions \(/\) mode \()\) & \((8\) total sessions \(/\) mode \()\) \\
\(2 /\) month & \(1 /\) month \\
\((8\) total sessions \(/\) mode \()\) & \((8\) total sessions \(/\) mode \()\) \\
\hline
\end{tabular}
\begin{tabular}{|lcccl|}
\hline Table 2. Angler rationale for declining to be interviewed by fishing mode. \\
\hline & \begin{tabular}{c} 
Percent \\
Declined
\end{tabular} & Declined & Approached & Reason for decline \\
\hline Mode & \(24.7 \%\) & 111 & 449 & \begin{tabular}{l} 
Language difficult or lack of \\
time.
\end{tabular} \\
\hline Charter Boat & \(26.5 \%\) & 68 & 257 & Lack of time \\
\begin{tabular}{l} 
Private boat \\
Beach or Intertidal \\
Zone
\end{tabular} & \(13.7 \%\) & 22 & 161 & Lack of time \\
\hline Total & \(12.9 \%\) & 4 & 31 & Language difficulties \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline Table 3. Margin of error for each fishing mode. \\
\hline Mode & Sample Size & Margin of Error (95\% CI) \\
\hline Pier or Jetty & 338 & \(\pm 5 \%\) \\
Charter Boat & 189 & \(\pm 7 \%\) \\
Private boat & 139 & \(\pm 8 \%\) \\
Beach/Intertidal Zone & 27 & \(\pm 18 \%\) \\
\hline Total & 693 & \(\pm 4 \%\) \\
\hline
\end{tabular}

Table 4. Population level angler characteristics ( \(\mathbf{N}=693\) ).
\begin{tabular}{|lcc|}
\hline Gender & Count & Percentage \\
\hline Male & 653 & \(94.2 \%\) \\
\hline Female & 40 & \(5.8 \%\) \\
\hline Total & 693 & \(100.0 \%\) \\
\hline Anglers of Hispanic, Latino, or Spanish Origin (Q25) & Count & Percentage \\
\hline No & 406 & \(60.4 \%\) \\
Yes & 266 & \(39.6 \%\) \\
\cline { 2 - 3 } Total & 672 & \(100.0 \%\) \\
\hline Ethnicity (Q26) & Count & Percentage \\
\hline Hispanic, Latino, Spanish & 256 & \(36.9 \%\) \\
White & 167 & \(24.1 \%\) \\
\hline Asian & 165 & \(23.8 \%\) \\
Black or African American & 43 & \(6.2 \%\) \\
Other (including Mixed) & 62 & \(8.9 \%\) \\
\hline Total & 693 & \(100.0 \%\) \\
\hline Asian Ethnicity Specified & Count & Percentage \\
\hline Filipino & 63 & \(40.9 \%\) \\
Japanese & 24 & \(15.6 \%\) \\
\hline Korean & 19 & \(12.3 \%\) \\
Chinese & 16 & \(10.4 \%\) \\
Vietnamese & 14 & \(9.1 \%\) \\
Other & 18 & \(11.7 \%\) \\
\hline Total (excluding 11 Asian anglers who declined) & 154 & \(100.0 \%\) \\
\hline Language of Survey & Count & Percentage \\
\hline English & 644 & \(92.9 \%\) \\
Spanish & 48 & \(6.9 \%\) \\
Vietnamese & 1 & \(0.1 \%\) \\
\hline Total & Mean & \(100.0 \%\) \\
\hline & 44 years & Median \\
\hline Age (Q24) & & 43 years \\
\hline & & \\
\hline
\end{tabular}

Table 5. Interview mode across summer and non-summer months ( \(\mathbf{N}=693\) ).
\begin{tabular}{|l|r|rr|r|r|}
\hline & \multicolumn{3}{|c|}{ Summer } & Total \\
\hline Mode & \# interviews & \% by season & \# interviews & \% by season & Count \\
\hline Pier or Jetty & 146 & \(39.9 \%\) & 192 & \(58.7 \%\) & 338 \\
Private boat & 80 & \(21.9 \%\) & 59 & \(18.0 \%\) & 139 \\
Charter boat & 118 & \(32.2 \%\) & 71 & \(21.7 \%\) & 189 \\
Beach/Intertidal zone & 22 & \(6.0 \%\) & 5 & \(1.5 \%\) & 27 \\
\hline Total by count & 366 & \(100.0 \%\) & 327 & \(100.0 \%\) & 693 \\
Total by season & 366 & \(52.8 \%\) & 327 & \(47.2 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

46
\begin{tabular}{|lcc|}
\hline Table 5.a. Percentage of interviews conducted by time of year. & & \\
\hline Time of Year & Frequency & Percentage \\
\hline Summer & 366 & 52.8 \\
\hline Non-Summer & 327 & 47.2 \\
\hline Total & 693 & 100.0 \\
\hline
\end{tabular}

Table 6. Angler rationale for declining to be interviewed by fishing mode.
\begin{tabular}{|lcccl|}
\hline Mode & \begin{tabular}{c} 
Percent \\
Declined
\end{tabular} & Declined & Approached & Reason for decline \\
\hline Pier or Jetty & \(24.7 \%\) & 111 & 449 & Language difficult or lack of time. \\
Charter Boat & \(26.5 \%\) & 68 & 257 & Lack of time \\
Private boat & \(13.7 \%\) & 22 & 161 & Lack of time \\
\begin{tabular}{lccc} 
Beach or Intertidal & \(12.9 \%\) & 4 & 31
\end{tabular} & Language difficulties \\
\hline Zone & \(22.8 \%\) & 205 & 898 & \(\mathrm{n} / \mathrm{a}\) \\
\hline Total & & & \\
\hline
\end{tabular}
\begin{tabular}{|lcc|}
\hline Table 7. Angler ethnicity (N=693)(Q26). & & \\
\hline Ethnicity & Count & Percentage \\
\hline Hispanic, Latino, or Spanish & 256 & \(36.9 \%\) \\
White (non-Hispanic) & 167 & \(24.1 \%\) \\
Asian & 165 & \(23.8 \%\) \\
Black or African American & 43 & \(6.2 \%\) \\
Other (including individuals of Mixed ethnic background) & 62 & \(8.9 \%\) \\
\hline Totals & 693 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. Twenty-one respondents declined to answer and were included in Other if ethnicity was not readily
\begin{tabular}{|lcc|}
\hline Table 8. Ethnic breakdown for anglers identifying as Asian (N=154)(Q26). \\
\hline Ethnicity & Count & Percentage \\
\hline Filipino & 63 & \(40.9 \%\) \\
Japanese & 24 & \(15.6 \%\) \\
Korean & 19 & \(12.3 \%\) \\
Chinese & 16 & \(10.5 \%\) \\
Vietnamese & 14 & \(9.1 \%\) \\
Other & 18 & \(11.7 \%\) \\
\hline Totals & 154 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. Figures exclude 11 Asian anglers who declined to respond.

Table 9. Language used during interview (N=693).
\begin{tabular}{|lcc|}
\hline Language & Interviews & Percentage \\
\hline English & 644 & \(93.0 \%\) \\
Spanish & 48 & \(6.9 \%\) \\
Vietnamese & 1 & \(0.1 \%\) \\
\hline Totals & 693 & \(100.0 \%\) \\
\hline
\end{tabular}

NOTE. 11 respondents declined to answer.

Table 10. Mode of fishing in the past year by mode at time of interview ( \(\mathrm{N}=693\) )(Q2).
\begin{tabular}{|lrrrrr|}
\hline & & \multicolumn{4}{c|}{ Mode at time of interview } \\
\hline & Pier or Jetty & Private Boat & Charter Boat & \begin{tabular}{r} 
Beach or \\
Intertidal zone
\end{tabular} \\
\hline Mode in past year (Q2) & \(\mathrm{N}=338\) & \(\mathrm{~N}=139\) & \(\mathrm{~N}=189\) & \(\mathrm{~N}=27\) \\
\hline \multirow{2}{*}{ Pier/Jetty } & Interview Count & \% within Mode & - & 55 & 71 \\
\hline \multirow{2}{*}{ Private Boat } & Interview Count & - & \(39.6 \%\) & \(37.6 \%\) & 17 \\
& \% within Mode & \(25.4 \%\) & - & 60 & \(63.0 \%\) \\
\hline \multirow{2}{*}{ Charter Boat } & Interview Count & 87 & - & \(31.7 \%\) & 11 \\
& \% within Mode & \(25.7 \%\) & 71 & - & \(40.7 \%\) \\
\hline Beach or & Interview Count & 94 & \(51.1 \%\) & - & \(29.6 \%\) \\
Intertidal Zone & \% within Mode & \(27.8 \%\) & 55 & 45 & - \\
\hline
\end{tabular}

NOTE. Respondents could choose more than one mode in the past year. Results may sum to more than \(100 \%\).

Table 10.a. Percentage of interviews conducted across fishing mode.
\begin{tabular}{|lcc|}
\hline Mode & Frequency & Percentage \\
\hline Pier or Jetty & 338 & 48.8 \\
Party or Charter Boat & 189 & 27.3 \\
Private boat & 139 & 20.1 \\
Beach or Intertidal Zone & 27 & 3.9 \\
\hline Total & 693 & 100.0 \\
\hline
\end{tabular}

Table 11. Percentage of anglers who reported catching fish and had their catch identified by mode ( \(\mathbf{N}=\mathbf{2 2 0}\) ).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{Mode} \\
\hline \multicolumn{2}{|l|}{Catch Examined? (Q8)} & Pier or Jetty & Private boat & Charter boat & Beach or Intertidal zone \\
\hline \multirow[t]{2}{*}{No} & Angler Count & 42 & 16 & 29 & 7 \\
\hline & \% within Mode & 34.4\% & 53.3\% & 50.9\% & 70.0\% \\
\hline \multirow[t]{2}{*}{Yes} & Angler Count & 80 & \(\begin{array}{r}14 \\ \hline\end{array}\) & 28 & 3 \\
\hline & \% within Mode & 65.6\% & 46.7\% & 49.1\% & 30.0\% \\
\hline \multirow[t]{2}{*}{Total} & Angler Count & 122 & 30 & 57 & 10 \\
\hline & \% within Mode & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

NOTE. There were 15 missing cases. A larger percentage of anglers are piers or jetties allowed surveyors to identify their catch than at other modes \((65.6 \%, \mathrm{p}<0.05)\).

Table 11.a. Percentage of anglers who fished at various fishing modes over the past year ( \(\mathrm{N}=693\) ).
\begin{tabular}{|lrr|}
\hline Fishing Mode (Q2) & Frequency & Percentage \\
\hline Pier & 421 & 62.2 \\
Party Boat & 341 & 50.4 \\
Private Boat & 293 & 43.3 \\
Jetty & 225 & 33.2 \\
Beach or Intertidal Zone & 220 & 32.5 \\
Other & 10 & 1.5 \\
\hline Total & 1510 & 223.0 \\
\hline
\end{tabular}

NOTE. Respondents were asked to choose all that apply; therefore, percentage may sum to greater than \(100 \%\).

Table 12. Percentage of anglers with specific types of fish by fishing mode (N=125).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Common Name & Scientific Name & & Pier or Jetty & Private Boat & \begin{tabular}{l}
Charter \\
Boat
\end{tabular} & Beach or Intertida I & Total \\
\hline & & & ( \(\mathrm{N}=75\) ) & ( \(\mathrm{N}=12\) ) & ( \(\mathrm{N}=24\) ) & ( \(\mathrm{N}=2\) ) & 113 \\
\hline white croaker \({ }^{\text {DNC }}\) & Genyonemus lineatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
6 \\
8.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
50.0 \%
\end{array}
\] & 8 \\
\hline barred sand bass DNC & Paralabrax nebulifer & Angler Count: \% within Mode: & \[
\begin{array}{r}
4 \\
5.3 \%
\end{array}
\] & \[
\begin{array}{r}
3 \\
25.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 8 \\
\hline black croaker \({ }^{\text {DNC }}\) & Cheilotrema saturnum & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0 \%
\end{array}
\] & 0 \\
\hline topsmelt \({ }^{\text {DNC }}\) & Atherinops affinis & Angler Count: \% within Mode: & \[
\begin{array}{r}
9 \\
12.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 12 \\
\hline Pacific barracuda DNC & Sphryraena argentea & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
3 \\
12.5 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline barred surfperch & Amphistichus argenteus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline sargo & Anisotremus davidsonii & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline jacksmelt & Atherinopsis californiensis & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
6.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 5 \\
\hline shark & Chondrichthyes, unid. & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline blacksmith & Chromis punctipinnis & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline sanddab & Citharichthys spp. & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
3 \\
25.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline black perch & Embiotoca jacksoni & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline surfperch, unspecified & Embiotocidae & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline opaleye perch & Girella nigricans & Angler Count: & 1 & 0 & 1 & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \% within Mode: & 1.3\% & 0.0\% & 4.2\% & 0.0\% & \\
\hline zebra perch & Hermosilla azurea & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline walleye surfperch & Hyperprosopon argenteum & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline California corbina & Menticirrhus undulatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline lingcod & Ophiodon elongatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline senorita & Oxyiulis californica & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline kelp bass & Paralabrax clathratus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 3 \\
\hline California halibut & Paralichthys californicus & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 4 \\
\hline ray, unspecified & Rajiformes, unid. & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline shovelnose guitarfish & Rhinobatos productus & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline spotfin croaker & Roncador stearnsii & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline Pacific sardine & Sardinops sagax & Angler Count: \% within Mode: & \[
\begin{array}{r}
26 \\
34.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 26 \\
\hline California scorpionfish & Scorpaena guttata & Angler Count: \% within Mode: & \[
\begin{array}{r}
1 \\
1.3 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
16.7 \%
\end{array}
\] & \[
\begin{array}{r}
8 \\
33.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 11 \\
\hline chilipepper rockfish & Sebastes goodei & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 1 \\
\hline vermilion rockfish & Sebastes miniatus & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline California sheephead & Semicossyphus pulcher & Angler Count: \% within Mode: & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
2 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline queenfish & Seriphus politus & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline California lizardfish & Synodus lucioceps & Angler Count: \% within Mode: & \[
\begin{array}{r}
5 \\
6.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 6 \\
\hline yellow croaker & Umbrina roncador & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 2 \\
\hline bass, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
2 \\
2.7 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
6 \\
25.0 \%
\end{array}
\] & 0
\(0.0 \%\) & 8 \\
\hline chub mackerel & & Angler Count: \% within Mode: & \[
\begin{array}{r}
26 \\
34.7 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
8.3 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & 27 \\
\hline perch, unspecified & & Angler Count: \% within Mode: & \[
\begin{array}{r}
15 \\
20.0 \%
\end{array}
\] & \[
\begin{array}{r}
0 \\
0.0 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
4.2 \%
\end{array}
\] & \[
\begin{array}{r}
1 \\
50.0 \%
\end{array}
\] & 17 \\
\hline & & Angler Count: & 1 & 2 & 6 & 0 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
rockfish, \\
unspecified
\end{tabular} & \% within Mode: & \(1.3 \%\) & \(16.7 \%\) & \(25.0 \%\) & \(0.0 \%\) \\
\hline
\end{tabular}

NOTE. There are 12 missing cases.

\section*{Table 13. Angler common names for identified fish species ( \(\mathrm{N}=125\) ).}
\begin{tabular}{|c|c|c|c|}
\hline Common Name & Scientific Name & Angler Common Names & \# Anglers \\
\hline white croaker \({ }^{\text {DNC }}\) & Genyonemus lineatus & queen fish corbina & 8 \\
\hline topsmelt DNC & Atherinops affinis & topsmelt jacksmelt & 12 \\
\hline barred sand bass DNC & Paralabrax nebulifer & barred sand bass calico bass & 8 \\
\hline Pacific barracuda \({ }^{\text {DNC }}\) & Sphryraena argentea & barracuda & 3 \\
\hline barred surfperch & Amphistichus argenteus & buttermouth perch & 1 \\
\hline sargo & Anisotremus davidsonii & sargo & 2 \\
\hline jacksmelt & Atherinopsis californiensis & jacksmelt topsmelt & 5 \\
\hline shark & Chondrichthyes, unid. & & 1 \\
\hline blacksmith & Chromis punctipinnis & blacksmith & 1 \\
\hline sanddab & Citharichthys spp. & sand dab & 3 \\
\hline black perch & Embiotoca jacksoni & black perch & 2 \\
\hline surfperch, unspecified & Embiotocidae & surfperch & 1 \\
\hline opaleye perch & Girella nigricans & opal eye & 2 \\
\hline walleye surfperch & Hyperprosopon argenteum & no answer & 1 \\
\hline California corbina & Menticirrhus undulatus & no answer & 1 \\
\hline lingcod & Ophiodon elongatus & lingcod & 1 \\
\hline senorita & Oxyjulis californica & senorita & 1 \\
\hline kelp bass & Paralabrax clathratus & calico bass white croaker & 3 \\
\hline California halibut & Paralichthys californicus & halibut & 4 \\
\hline ray, unspecified & Rajiformes, unid. & skate thornback & 1 \\
\hline shovelnose guitarfish & Rhinobatos productus & guitar fish & 1 \\
\hline spotfin croaker & Roncador stearnsii & yellow croaker & 2 \\
\hline Pacific sardine & Sardinops sagax & sardine & 26 \\
\hline California scorpionfish & Scorpaena guttata & sculpin scorpion scorpion fish & 11 \\
\hline chilipepper rockfish & Sebastes goodei & & 1 \\
\hline vermilion rockfish & Sebastes miniatus & red snapper & 2 \\
\hline California sheephead & Semicossyphus pulcher & & 2 \\
\hline queenfish & Seriphus politus & & 2 \\
\hline California lizardfish & Synodus lucioceps & topsmelt & 6 \\
\hline yellow croaker & Umbrinaroncador & yellow croaker & 2 \\
\hline Mackerel & & mackerel topsmelt perch & 27 \\
\hline perch, unspecified & & perch & 17 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline rock fish, unspecified & rock fish & 9 \\
\hline bass unspecified & sand bass & 8 \\
\hline smelt, unspecified & & 1 \\
\hline
\end{tabular}

NOTE. All 125 anglers with fish in their bucket were asked what they called the fish but answers were not required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{Fate of Fish} \\
\hline & & Eat & Give Away & Throw Back & Bait & Other \\
\hline Species & & ( \(\mathrm{N}=99\) ) & ( \(\mathrm{N}=25\) ) & ( \(\mathrm{N}=12\) ) & ( \(\mathrm{N}=34\) ) & ( \(\mathrm{N}=2\) ) \\
\hline \multirow[t]{2}{*}{white croaker DNC} & Angler Count & 10 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 10.1\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{barred sand bass \({ }^{\text {DNC }}\)} & Angler Count: & 0 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{black croaker \({ }^{\text {DNC }}\)} & Angler Count: & 0 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{topsmelt \({ }^{\text {DNC }}\)} & Angler Count: & 19 & 7 & 2 & 6 & 0 \\
\hline & \% by Fate: & 19.2\% & 28.0\% & 16.7\% & 17.6\% & 0.0\% \\
\hline \multirow[t]{2}{*}{Pacific barracuda \({ }^{\text {DNC }}\)} & Angler Count: & 5 & 2 & 0 & 0 & 0 \\
\hline & \% by Fate: & 5.1\% & 8.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{barred surfperch} & Angler Count: & 0 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{sargo} & Angler Count: & 2 & 4 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 16.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{jacksmelt} & Angler Count: & 5 & 0 & 0 & 4 & 0 \\
\hline & \% by Fate: & 5.1\% & 0.0\% & 0.0\% & 11.8\% & 0.0\% \\
\hline \multirow[t]{2}{*}{shark} & Angler Count: & 1 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 1.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{blacksmith} & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{sanddab, unidentified} & Angler Count: & 3 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{black perch} & Angler Count: & 1 & 3 & 0 & 0 & 0 \\
\hline & \% by Fate: & 1.0\% & 12.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{surfperch, unidentified} & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{opaleye perch} & Angler Count: & 2 & 3 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 12.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{zebra perch} & Angler Count: & 0 & 1 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 4.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline walleye surfperch & Angler Count: & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \% by Fate: & 0.0\% & 0.0\% & 0.0\% & 2.9\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California corbina} & Angler Count: & 0 & 4 & 0 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 16.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{lingcod} & Angler Count: & 3 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{senorita} & Angler Count: & 2 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{kelp bass} & Angler Count: & 6 & 2 & 1 & 0 & 0 \\
\hline & \% by Fate: & 6.1\% & 8.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California halibut} & Angler Count: & 4 & 2 & 2 & 0 & 0 \\
\hline & \% by Fate: & 4.0\% & 8.0\% & 16.7\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{ray, unidentified} & Angler Count: & 2 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{shovelnose guitarfish} & Angler Count: & 0 & 0 & 1 & 0 & 0 \\
\hline & \% by Fate: & 0.0\% & 0.0\% & 8.3\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{spotfin croaker} & Angler Count: & 3 & 4 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 16.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{Pacific sardine} & Angler Count: & 21 & 4 & 0 & 16 & 0 \\
\hline & \% by Fate: & 21.2\% & 16.0\% & 0.0\% & 47.1\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California scorpionfish} & Angler Count: & 14 & 3 & 1 & 2 & 0 \\
\hline & \% by Fate: & 14.1\% & 12.0\% & 8.3\% & 5.9\% & 0.0\% \\
\hline \multirow[t]{2}{*}{chilipepper rockfish} & Angler Count: & 2 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 2.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{vermilion rockfish} & Angler Count: & 4 & 0 & 0 & 0 & 0 \\
\hline & \% by Fate: & 4.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{California sheephead} & Angler Count: & 3 & 1 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 4.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{queenfish} & Angler Count: & 0 & 1 & 2 & 0 & 1 \\
\hline & \% by Fate: & 0.0\% & 4.0\% & 16.7\% & 0.0\% & 50.0\% \\
\hline \multirow[t]{2}{*}{California lizardfish} & Angler Count: & 6 & 2 & 2 & 3 & 0 \\
\hline & \% by Fate: & 6.1\% & 8.0\% & 16.7\% & 8.8\% & 0.0\% \\
\hline \multirow[t]{2}{*}{yellow croaker} & Angler Count: & 3 & 5 & 0 & 0 & 0 \\
\hline & \% by Fate: & 3.0\% & 20.0\% & 0.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{bass, unspecified} & Angler Count: & 12 & 2 & 3 & 0 & 0 \\
\hline & \% by Fate: & 12.1\% & 8.0\% & 25.0\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{mackerel unspecified} & Angler Count: & 27 & 1 & 1 & 16 & 0 \\
\hline & \% by Fate: & 27.3\% & 4.0\% & 8.3\% & 47.1\% & 0.0\% \\
\hline \multirow[t]{2}{*}{perch unspecified} & Angler Count: & 19 & 3 & 3 & 7 & 1 \\
\hline & \% by Fate: & 19.2\% & 12.0\% & 25.0\% & 20.6\% & 50.0\% \\
\hline \multirow[t]{2}{*}{rock fish unspecified} & Angler Count: & 8 & 1 & 1 & 2 & 0 \\
\hline & \% by Fate: & 8.1\% & 4.0\% & 8.3\% & 5.9\% & 0.0\% \\
\hline
\end{tabular}

NOTE. \(\mathrm{N}=109\) is the number of unique responses. Not all anglers responded.

Table 14.a. Fish Species Observed in Angler's Bucket ( \(\mathrm{N}=125\) ).
\begin{tabular}{|c|c|c|c|c|}
\hline Common Name & Scientific Name & Angler Common Names & No. Anglers & Percent \\
\hline barred surfperch & Amphistichus argenteus & buttermouth perch & 1 & 0.8\% \\
\hline sargo & Anisotremus davidsonii & sargo & 2 & 1.6\% \\
\hline topsmelt & Atherinops affinis & topsmelt jacksmelt & 12 & 9.6\% \\
\hline jacksmelt & Atherinopsis californiensis & jacksmelt topsmelt & 5 & 4.0\% \\
\hline shark & Chondrichthyes, unid. & & 1 & 0.8\% \\
\hline blacksmith & Chromis punctipinnis & blacksmith & 1 & 0.8\% \\
\hline sanddab & Citharichthys spp. & sand dab & 3 & 2.4\% \\
\hline black perch & Embiotoca jacksoni & black perch & 2 & 1.6\% \\
\hline surfperch, unspecified & Embiotocidae & surfperch & 1 & 0.8\% \\
\hline white croaker & Genyonemus lineatus & queen fish, king fish corvina & 8 & 6.4\% \\
\hline opaleye perch & Girella nigricans & opal eye & 2 & 1.6\% \\
\hline walleye surfperch & Hyperprosopon argenteum & & 1 & 0.8\% \\
\hline California corbina & Menticirrhus undulatus & & 1 & 0.8\% \\
\hline lingcod & Ophiodon elongatus & lingcod & 1 & 0.8\% \\
\hline senorita & Oxyjulis californica & senorita & 1 & 0.8\% \\
\hline kelp bass & Paralabrax clathratus & calico bass white croaker & 3 & 2.4\% \\
\hline barred sand bass & Paralabrax nebulifer & barred sand bass calico bass & 8 & 6.4\% \\
\hline California halibut & Paralichthys californicus & halibut & 4 & 3.2\% \\
\hline ray, unspecified & Rajiformes, unid. & skate thornback & 1 & 0.8\% \\
\hline shovelnose guitarfish & Rhinobatos productus & guitar fish & 1 & 0.8\% \\
\hline spotfin croaker & Roncador stearnsii & yellow croaker & 2 & 1.6\% \\
\hline Pacific sardine & Sardinops sagax & sardine & 26 & 20.8\% \\
\hline & & sculpin scorpion & & \\
\hline California scorpionfish & Scorpaena guttata & scorpion fish & 11 & 8.8\% \\
\hline chilipepper rockfish & Sebastes goodei & & 1 & 0.8\% \\
\hline vermilion rockfish & Sebastes miniatus & red snapper & 2 & 1.6\% \\
\hline California sheephead & Semicossyphus pulcher & & 2 & 1.6\% \\
\hline queenfish & Seriphus politus & & 2 & 1.6\% \\
\hline Pacific barracuda & Sphryraena argentea & barracuda & 3 & 2.4\% \\
\hline California lizardfish & Synodus lucioceps & topsmelt & 6 & 4.8\% \\
\hline \multirow[t]{3}{*}{yellow croaker} & Umbrinaroncador & yellow croaker & 2 & 1.6\% \\
\hline & & mackerel & & \\
\hline & & topsmelt & & \\
\hline chub mackerel & & perch & 27 & 21.6\% \\
\hline perch, unspecified & & perch & 17 & 13.6\% \\
\hline rock fish, unspecified & & rock fish & 9 & 7.2\% \\
\hline bass unspecified & & sand bass & 8 & 6.4\% \\
\hline smelt, unspecified & & & 1 & 0.8\% \\
\hline
\end{tabular}

Table 15. Fish consumption by part and angler ethnicity ( \(\mathbf{N}=270\) )(Q19).
\begin{tabular}{|lrrrrrr|r|}
\hline Parts consumed & & Hispanic & White & Asian & Black & Other & All \\
\hline Steak or fillets & Angler Count: & 53 & 51 & 39 & 18 & 5 & 166 \\
without skin & \% within Ethnicity: & \(60.2 \%\) & \(77.3 \%\) & \(47.0 \%\) & \(81.8 \%\) & \(100.0 \%\) & \(61.5 \%\) \\
Steak or fillets & Angler Count: & 24 & 14 & 16 & 2 & 0 & 56 \\
with skin & \% within Ethnicity: & \(27.3 \%\) & \(21.2 \%\) & \(19.3 \%\) & \(9.1 \%\) & \(0.0 \%\) & \(20.7 \%\) \\
Whole without guts & Angler Count: & 15 & 6 & 31 & 4 & 0 & 56 \\
& \% within Ethnicity: & \(17.0 \%\) & \(9.1 \%\) & \(37.3 \%\) & \(18.2 \%\) & \(0.0 \%\) & \(20.7 \%\) \\
Whole with guts & Angler Count: & 3 & 1 & 8 & 0 & 0 & 12 \\
& \% within Ethnicity: & \(3.4 \%\) & \(1.5 \%\) & \(9.6 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(4.4 \%\) \\
Other & Angler Count: & 1 & 0 & 2 & 0 & 0 & 3 \\
& \(\%\) within Ethnicity: & \(1.1 \%\) & \(0.0 \%\) & \(2.4 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(1.1 \%\) \\
\hline
\end{tabular}

NOTE. Respondents were encouraged to choose all that apply. Percentages may sum to greater than \(100 \%\).
\begin{tabular}{|l|cc|}
\hline Table 15.a. Fish consumption four weeks prior to survey by part (N=270). & & \\
\hline & Frequency & Percentage \\
\hline Steak or fillets without skin & 168 & 62.9 \\
Whole without guts & 58 & 21.7 \\
Steaks or fillets with skin & 55 & 20.6 \\
Whole with guts & 13 & 4.9 \\
Other & 4 & 1.5 \\
\hline Total & 298 & 111.6 \\
\hline
\end{tabular}

NOTE. Respondents were asked to choose all that apply; therefore, percentage may sum to greater than \(100 \%\).

Table 16. Reported consumption among anglers in the study region ( \(\mathrm{N}=693\) )(Q3 and Q7).
\begin{tabular}{|lccccc|}
\hline Survey question & \begin{tabular}{c} 
Pier or \\
Jetty
\end{tabular} & \begin{tabular}{c} 
Charter \\
Boat
\end{tabular} & \begin{tabular}{c} 
Private \\
Boat
\end{tabular} & \begin{tabular}{c} 
Beach or \\
Intertidal Zone
\end{tabular} & \begin{tabular}{c} 
Full \\
Sample
\end{tabular} \\
\hline & \((\mathrm{N}=338)\) & \((\mathrm{N}=189)\) & \((\mathrm{N}=139)\) & \((\mathrm{N}=27)\) & (N=693) \\
\hline \begin{tabular}{l} 
During the past four weeks, have you \\
eaten fish caught in this region (shown \\
map)? (Q3) [Percent reporting "Yes"] \\
Have you caught any fish today? (Q7) \\
[Percent reporting "Yes"]
\end{tabular} & \(34 \%\) & \(44 \%\) & \(45 \%\) & \(41 \%\) & \(39 \%\) \\
\hline
\end{tabular}

Table 17. Quantitative measure of fish consumption by ethnicity ( \(\mathbf{N}=270\) \& \(\mathbf{N}=693\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Consumption Rate (g/ind./day)} \\
\hline & \multicolumn{5}{|c|}{Angler Consumers (Q3, Q6)*} & \multicolumn{5}{|c|}{Anglers (all)**} \\
\hline Ethnicity & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline Hispanic & 80 & 16.41 & 20.69 & 10.71 & 41.79 & 258 & 5.09 & 6.76 & 0.00 & 16.07 \\
\hline Asian & 76 & 20.76 & 26.36 & 10.71 & 64.29 & 162 & 9.74 & 12.95 & 0.00 & 25.18 \\
\hline White & 54 & 19.25 & 29.31 & 9.38 & 42.86 & 164 & 6.34 & 9.86 & 0.00 & 16.07 \\
\hline Black & 17 & 23.00 & 34.40 & 16.07 & 60.00 & 44 & 8.88 & 13.81 & 0.00 & 32.14 \\
\hline Other & 22 & 12.78 & 20.98 & 6.70 & 36.43 & 51 & 5.51 & 9.72 & 0.00 & 16.07 \\
\hline TOTAL & 270 \({ }^{\text {a }}\) & 18.55 & 21.72 & 10.71 & 42.86 & \(693{ }^{\text {b }}\) & 6.88 & 8.47 & 0.00 & 21.43 \\
\hline
\end{tabular}

NOTE: U.C.L. \(=\) Upper Confidence Limit ( \(95 \%\) ); Md = Median (50\%); U.D. = Upper Decile (90\%); *Angler-
Consumers are defined as anglers who reported consuming fish in the 4 weeks prior to being surveyed - consistent with the 1994 study method; \({ }^{* *}\) Anglers (all) assumes that anglers who had not consumed a fish in the four weeks prior to being surveyed are not consumers of fish - this calculation underreports actual consumption rates; \({ }^{\text {a }}\) there were 21 instances of missing data; \({ }^{\text {b }}\) there were 14 instances of missing data; U.C.L. calculated using a bootstrapping technique applied to the mean.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fish species & \multicolumn{2}{|l|}{white croaker} & \multicolumn{2}{|l|}{barred sand bass} & \multicolumn{2}{|l|}{black croaker} & \multicolumn{2}{|l|}{topsmelt} & \multicolumn{2}{|l|}{barracuda} \\
\hline Fate of fish & Count & \% \\
\hline Eat them & 46 & 18.1\% & 110 & 41.2\% & 20 & 24.1\% & 35 & 14.0\% & 112 & 40.7\% \\
\hline Give away & 26 & 10.2\% & 39 & 14.6\% & 7 & 8.4\% & 25 & 10.0\% & 59 & 21.5\% \\
\hline Throw back & 169 & 66.5\% & 115 & 43.1\% & 54 & 65.1\% & 102 & 40.8\% & 98 & 35.6\% \\
\hline Bait & 11 & 4.3\% & 1 & 0.4\% & 1 & 1.2\% & 87 & 34.8\% & 3 & 1.1\% \\
\hline Other & 2 & 0.8\% & 2 & 0.7\% & 1 & 1.2\% & 1 & 0.4\% & 3 & 1.1\% \\
\hline TOTAL & 254 & 100\% & 267 & 100\% & 83 & 100\% & 250 & 100\% & 275 & 100\% \\
\hline
\end{tabular}

NOTE. There were 142 missing cases ( 27 missing white croaker, 37 missing barred sand bass, 11 missing black croaker, 32 missing topsmelt, and 35 missing barracuda).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q18 Usually do with fish... & white croaker & barred sandbasss and bass & topsmelt & barracuda & black croaker \\
\hline \multirow{3}{*}{Eat them} & 36 & 110 & 16 & 107 & 20 \\
\hline & 14.9\% & 41.2\% & 7.4\% & 39.9\% & 24.1\% \\
\hline & 23 & 39 & 18 & 57 & 7 \\
\hline \multirow[t]{2}{*}{Give away} & 9.5\% & 14.6\% & 8.3\% & 21.3\% & 8.4\% \\
\hline & 169 & 115 & 100 & 98 & 54 \\
\hline \multirow[t]{2}{*}{Throw back} & 70.1\% & 43.1\% & 46.3\% & 36.6\% & 65.1\% \\
\hline & 11 & 1 & 81 & 3 & 1 \\
\hline \multirow[t]{2}{*}{Bait} & 4.6\% & . \(4 \%\) & 37.5\% & 1.1\% & 1.2\% \\
\hline & 2 & 2 & 1 & 3 & 1 \\
\hline \multirow[t]{2}{*}{Other} & .8\% & .7\% & .5\% & 1.1\% & 1.2\% \\
\hline & 241 & 267 & 216 & 268 & 83 \\
\hline & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline TOTAL & 27 & 37 & 32 & 35 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q13 Usually do with fish... & \multicolumn{4}{|l|}{\begin{tabular}{cccc} 
white & \begin{tabular}{c} 
Types of DNC Fish - Identified by Interviewer (Q9) \\
barred \\
croaker
\end{tabular} & \begin{tabular}{c} 
sandbass
\end{tabular} & topsmelt
\end{tabular} barracuda} & black croaker \\
\hline & 3 & 5 & 5 & 2 & - \\
\hline Eat them & - & - & - & - & - \\
\hline Give away & 2 & 1 & 2 & 1 & - \\
\hline & - & - & - & - & - \\
\hline Throw back & - & - & 1 & - & - \\
\hline & - & - & - & - & - \\
\hline Bait & - & - & 2 & - & - \\
\hline & - & - & - & - & - \\
\hline Other & - & 1 & - & - & - \\
\hline & - & - & - & - & - \\
\hline & 5 & 7 & 10 & 3 & - \\
\hline TOTAL & - & - & - & - & - \\
\hline
\end{tabular}

NOTE. There were 5 missing cases.

Table 19. Fish consumption by angler ethnicity ( \(\mathbf{N}=661\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angler Ethnicity & \multicolumn{2}{|l|}{Hispanic} & \multicolumn{2}{|c|}{White} & \multicolumn{2}{|c|}{Asian} & \multicolumn{2}{|c|}{Black} & \multicolumn{2}{|c|}{Other} & Total \\
\hline DNC Fish & Count & \% & Count \\
\hline White croaker & 9 & 16.7\% & 4 & 14.3\% & 9 & 26.5\% & 4 & 40.0\% & 1 & 16.7\% & 27 \\
\hline Barred sand bass & 21 & 38.9\% & 16 & 57.1\% & 10 & 29.4\% & 5 & 50.0\% & 2 & 33.3\% & 54 \\
\hline Black croaker & 2 & 3.7\% & 1 & 3.6\% & 3 & 8.8\% & 0 & 0.0\% & 0 & 0.0\% & 6 \\
\hline Topsmelt & 5 & 9.3\% & 0 & 0.0\% & 6 & 17.6\% & 0 & 0.0\% & 0 & 0.0\% & 11 \\
\hline Barracuda & 17 & 31.5\% & 7 & 25.0\% & 6 & 17.6\% & 1 & 10.0\% & 3 & 50.0\% & 34 \\
\hline TOTAL & 54 & 100\% & 28 & 100\% & 34 & 100\% & 10 & 100\% & 6 & 100\% & 132 \\
\hline
\end{tabular}

NOTE. There are 32 missing cases. Count refers to the number of anglers observed.

The Study reports ethnicities in a fashion consistent with the U.S. Census. During interviews, however, additional races were identified. For the tables that did not rise to the level of statistical significance, analysis is shown for all races identified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Count} & White & Black or African American & Hispanic or Latino & American Indian or AK Native & Asian & Pacific Islander & Mixed Race \\
\hline \multirow[b]{2}{*}{white croaker \({ }^{\text {DNC }}\)} & 27 & 4 & 4 & 9 & 0 & 9 & 1 & 0 \\
\hline & \% & 2.4\% & 9.1\% & 3.5\% & 0.0\% & 5.6\% & 16.7\% & 0.0\% \\
\hline \multirow[b]{2}{*}{barred sand bass DNC} & 54 & 16 & 5 & 21 & 1 & 10 & 0 & 1 \\
\hline & \% & 9.8\% & 11.4\% & 8.1\% & 12.5\% & 6.2\% & 0.0\% & 5.3\% \\
\hline \multirow[b]{2}{*}{topsmelt DNC} & 11 & 0 & 0 & 5 & 0 & 6 & 0 & 0 \\
\hline & \% & 0.0\% & 0.0\% & 1.9\% & 0.0\% & 3.7\% & 0.0\% & 0.0\% \\
\hline \multirow[t]{2}{*}{barracuda DNC} & 34 & 7 & 1 & 17 & 1 & 6 & 0 & 2 \\
\hline & \% & 4.3\% & 2.3\% & 6.6\% & 12.5\% & 3.7\% & 0.0\% & 10.5\% \\
\hline \multirow{2}{*}{black croaker \({ }^{\text {DNC }}\)} & 6 & 1 & 0 & 2 & 0 & 3 & 0 & 0 \\
\hline & \% & .6\% & 0.0\% & .8\% & 0.0\% & 1.9\% & 0.0\% & 0.0\% \\
\hline
\end{tabular}

NOTE. There were 32 missing cases.

Table 19.b. Anglers who consumed any dnc fish in the four weeks prior to survey, by ethnicity - piers and jetties ( \(\mathbf{N}=338\) ).
\begin{tabular}{|lccccccc|c|}
\hline & White & \begin{tabular}{c} 
Black or \\
African \\
American
\end{tabular} & \begin{tabular}{c} 
Hispanic \\
or Latino
\end{tabular} & \begin{tabular}{c} 
American \\
Indian or \\
Alaska \\
Native
\end{tabular} & Asian & \begin{tabular}{c} 
Pacific \\
Islander
\end{tabular} & \begin{tabular}{c} 
Mixed \\
Race
\end{tabular} & Total \\
\hline white croaker & 2 & 3 & 7 & 0 & 8 & 1 & 0 & 21 \\
DNC & \(5.6 \%\) & \(15.8 \%\) & \(4.1 \%\) & \(0.0 \%\) & \(8.7 \%\) & \(33.3 \%\) & \(0.0 \%\) & \(6.4 \%\) \\
barred sand & 2 & 2 & 12 & 0 & 1 & 0 & 0 & 17 \\
bass DNC & \(5.6 \%\) & \(10.5 \%\) & \(7.1 \%\) & \(0.0 \%\) & \(1.1 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(5.2 \%\) \\
topsmelt DNC & 0 & 0 & 5 & 0 & 6 & 0 & 0 & 11 \\
& \(0.0 \%\) & \(0.0 \%\) & \(3.0 \%\) & \(0.0 \%\) & \(6.5 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(3.4 \%\) \\
barracuda \({ }^{\text {DNC }}\) & 1 & 0 & 6 & 0 & 0 & 0 & 0 & 7 \\
& \(2.8 \%\) & \(0.0 \%\) & \(3.6 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(2.1 \%\) \\
black croaker DNC & 1 & 0 & 1 & 0 & 2 & 0 & 0 & 4 \\
\hline \multicolumn{1}{r|}{ TOTAL } & \(2.8 \%\) & \(0.0 \%\) & \(.6 \%\) & \(0.0 \%\) & \(2.2 \%\) & \(0.0 \%\) & \(0.0 \%\) & \(1.2 \%\) \\
\hline
\end{tabular}

NOTE. There were 11 missing cases.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Consume & White & Black or African American & Hispanic or Latino & American Indian or Alaska Native & Asian & Pacific Islander & Mixed Race & Total \\
\hline \multirow[b]{2}{*}{white croaker \({ }^{\text {DNC }}\)} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline & 1.5\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & .8\% \\
\hline \multirow[b]{2}{*}{barred sand bass \({ }^{\text {DNC }}\)} & 5 & 1 & 2 & 0 & 2 & 0 & 0 & 10 \\
\hline & 7.5\% & 9.1\% & 8.7\% & 0.0\% & 10.5\% & 0.0\% & 0.0\% & 7.6\% \\
\hline \multirow[b]{2}{*}{topsmelt DNC} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0\% & 0\% & & & & & & \\
\hline \multirow{2}{*}{barracuda \({ }^{\text {DNC }}\)} & 5 & 0 & 1 & 1 & 0 & 0 & 0 & 7 \\
\hline & 7.5\% & 0.0\% & 4.3\% & 50.0\% & 0.0\% & 0.0\% & 0.0\% & 5.3\% \\
\hline black croaker DNC & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline TOTAL & 67 & 11 & 23 & 2 & 19 & 2 & 7 & 131 \\
\hline
\end{tabular}

NOTE. There were 8 missing cases.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Consume & White & Black or African America n & Hispanic or Latino & American Indian or Alaska Native & Asian & \begin{tabular}{l}
Pacific \\
Islander
\end{tabular} & Mixed Race & Total \\
\hline \multirow{2}{*}{white croaker \({ }^{\text {DNC }}\)} & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 2 \\
\hline & 1.8\% & 0.0\% & 0.0\% & 0.0\% & 2.2\% & 0.0\% & 0.0\% & 1.1\% \\
\hline \multirow[t]{2}{*}{barred sand bass \({ }^{\text {DNC }}\)} & 9 & 2 & 7 & 1 & 7 & 0 & 1 & 27 \\
\hline & 16.1\% & 18.2\% & 13.0\% & 25.0\% & 15.6\% & 0.0\% & 16.7\% & 15.3\% \\
\hline topsmelt \({ }^{\text {DNC }}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[t]{2}{*}{barracuda \({ }^{\text {DNC }}\)} & 1 & 1 & 9 & 0 & 6 & 0 & 2 & 19 \\
\hline & 1.8\% & 9.1\% & 16.7\% & 0.0\% & 13.3\% & 0.0\% & 33.3\% & 10.7\% \\
\hline \multirow[t]{2}{*}{black croaker \({ }^{\text {DNC }}\)} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 2.2\% & 0.0\% & 0.0\% & 0.6\% \\
\hline TOTAL & 56 & 11 & 54 & 4 & 45 & 1 & 6 & 177 \\
\hline
\end{tabular}

NOTE. There were 12 missing cases.

Table19.e. Anglers who Consumed any DNC Fish in the Four Weeks Prior to Survey, by Ethnicity - Beaches and Intertidal Zones ( \(\mathbf{N}=27\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Consume & White & Black or African American & Hispanic or Latino & American Indian or Alaska Native & Asian & Pacific Islander & Mixed Race & Total \\
\hline white croaker \({ }^{\text {DNC }}\) & \[
\begin{gathered}
0 \\
0.0 \%
\end{gathered}
\] & \[
\begin{gathered}
1 \\
33.3 \%
\end{gathered}
\] & \[
\begin{gathered}
2 \\
16.7 \%
\end{gathered}
\] & 0 & 0 & 0 & 0 & \[
\begin{gathered}
3 \\
11.5 \%
\end{gathered}
\] \\
\hline barred sand bass DNC & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline topsmelt \({ }^{\text {DNC }}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline barracuda \({ }^{\text {DNC }}\) & \[
\begin{gathered}
0 \\
0.0 \%
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0.0 \%
\end{gathered}
\] & \[
\begin{gathered}
1 \\
8.3 \%
\end{gathered}
\] & 0 & 0 & 0 & 0 & \[
\begin{gathered}
1 \\
3.8 \%
\end{gathered}
\] \\
\hline black croaker \({ }^{\text {DNC }}\) & \[
\begin{gathered}
0 \\
0.0 \%
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0.0 \%
\end{gathered}
\] & \[
\begin{gathered}
1 \\
8.3 \%
\end{gathered}
\] & 0 & 0 & 0 & 0 & \[
\begin{gathered}
1 \\
3.8 \%
\end{gathered}
\] \\
\hline TOTAL & 5 & 3 & 12 & 0 & 6 & 0 & 0 & 26 \\
\hline
\end{tabular}

NOTE. There was 1 missing case.


Table 20. Reported fish preparation methods for consumption of DNC fish ( \(\mathbf{N}=110\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Q19 & \multicolumn{2}{|l|}{white croaker} & \multicolumn{2}{|l|}{barred sand bass} & \multicolumn{2}{|l|}{black croaker} & \multicolumn{2}{|l|}{barracuda} & \multicolumn{2}{|l|}{topsmelt} \\
\hline Fish part & Count & \% \\
\hline Whole with guts & 3 & 7.3\% & 4 & 3.4\% & 1 & 5.0\% & 1 & 0.9\% & 0 & 0.0\% \\
\hline Whole without guts & 7 & \[
\begin{gathered}
17.1 \\
\%
\end{gathered}
\] & 21 & \[
\begin{gathered}
18.1 \\
\%
\end{gathered}
\] & 4 & \[
\begin{gathered}
20.0 \\
\%
\end{gathered}
\] & 18 & \[
\begin{gathered}
16.8 \\
\%
\end{gathered}
\] & 7 & \[
\begin{gathered}
35.0 \\
\%
\end{gathered}
\] \\
\hline As steaks or fillets without the skin & 21 & \[
\begin{gathered}
51.2 \\
\%
\end{gathered}
\] & 62 & \[
\begin{gathered}
53.4 \\
\%
\end{gathered}
\] & 12 & \[
\begin{gathered}
60.0 \\
\%
\end{gathered}
\] & 62 & \[
\begin{gathered}
57.9 \\
\%
\end{gathered}
\] & 5 & \[
\begin{gathered}
25.0 \\
\%
\end{gathered}
\] \\
\hline As steaks or fillets with the skin & 6 & \[
\begin{gathered}
14.6 \\
\%
\end{gathered}
\] & 20 & \[
\begin{gathered}
17.2 \\
\%
\end{gathered}
\] & 2 & \[
\begin{gathered}
10.0 \\
\%
\end{gathered}
\] & 19 & \[
\begin{gathered}
17.8 \\
\%
\end{gathered}
\] & 6 & \[
\begin{gathered}
30.0 \\
\%
\end{gathered}
\] \\
\hline Other parts of fish & 1 & 2.4\% & 0 & 0.0\% & 1 & 5.0\% & 1 & 0.9\% & 0 & 0.0\% \\
\hline Don't Know & 3 & 7.3\% & 9 & 7.8\% & 0 & 0.0\% & 6 & 5.6\% & 2 & \[
\begin{gathered}
10.0 \\
\%
\end{gathered}
\] \\
\hline TOTAL & 41 & 100\% & 116 & 100\% & 20 & 100\% & 107 & 100\% & 20 & 100\% \\
\hline
\end{tabular}

Table 21: Quantitative measure of fish consumption of the five DNC fish ( \(\mathrm{N}=106\) \& \(\mathrm{N}=\mathbf{4 8 3}\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Consumption Rate (g/ind./day)} \\
\hline All Races/ Ethnicities & \multicolumn{5}{|c|}{Angler-Consumers*} & \multicolumn{5}{|c|}{Those Who Catch (Q9, Q16)**} \\
\hline Fish Type & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline white croaker \({ }^{\text {DNC }}\) & 23 & 8.73 & 11.10 & 5.36 & 19.29 & 263 & 0.76 & 1.17 & 0.00 & 0.00 \\
\hline barred sand bass DNC & 56 & 9.04 & 13.39 & 5.36 & 17.67 & 299 & 1.69 & 2.42 & 0.00 & 5.36 \\
\hline black croaker \({ }^{\text {DNC }}\) & 6 & 10.27 & 17.41 & 8.04 & -- & 94 & 0.66 & 1.42 & 0.00 & 0.00 \\
\hline topsmelt DNC & 8 & 17.41 & 39.50 & 8.04 & -- & 239 & 0.58 & 1.47 & 0.00 & 0.00 \\
\hline barracuda DNC & 32 & 9.71 & 15.64 & 5.36 & 17.95 & 298 & 1.04 & 1.81 & 0.00 & 2.68 \\
\hline Total & 106 & 11.50 & 16.54 & 5.36 & 24.11 & 483 & 2.52 & 3.52 & 0.00 & 5.36 \\
\hline
\end{tabular}

NOTE. U.C.L. = Upper Confidence Limit (95\%); Md = Median (50\%); U.D. = Upper Decile (90\%); *4 weeks; Total indicates combined consumption rates in \(\mathrm{g} / \mathrm{ind} /\) day across the five fish of interest. Consumers are anglers who reported eating the fish species in the past four weeks; \(\mathrm{N}=106\) represents number of anglers; n represents number of times the fish species was reported to be consumed. Anglers were asked to report all that applied

Table 21.a. Quantitative Measure of Fish Consumption of the Five DNC Fish by White Race.
Consumption Rate*
\begin{tabular}{|lccc|ccc|}
\hline & \multicolumn{5}{c|}{ Consumption Rate* } \\
\hline White & \multicolumn{7}{c|}{\begin{tabular}{c} 
Consumers \\
g/ind/day
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
Those Who Catch (Q9, Q16) \\
g/ind/day
\end{tabular}} \\
\hline Fish Type & \(\mathbf{n}\) & Mean & Md & \(\mathbf{n}\) & Mean & Md \\
\hline barred sand bass DNC & 15 & 6.43 & 5.36 & 82 & 1.18 & 0.00 \\
barracuda DNC & 7 & 4.59 & 5.36 & 86 & 0.37 & 0.00 \\
white croaker DNC & 4 & 5.36 & 4.02 & 51 & 0.42 & 0.00 \\
black croaker DNC & 1 & 5.36 & 5.36 & 18 & 0.28 & 0.00 \\
topsmelt DNC & 0 & -- & -- & 52 & 0.00 & 0.00 \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there was 1 missing case.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Consumption Rate*} \\
\hline Black or African American & \multicolumn{2}{|r|}{Consumers g/ind/day} & & \multicolumn{3}{|l|}{Those Who Catch (Q9, Q16) g/ind/day} \\
\hline Fish Type & n & Mean & Md & n & Mean & Md \\
\hline barred sand bass \({ }^{\text {DNC }}\) & 5 & 9.64 & 10.71 & 210 & 2.41 & 0.00 \\
\hline white croaker \({ }^{\text {DNC }}\) & 4 & 8.04 & 5.36 & 23 & 1.40 & 0.00 \\
\hline barracuda DNC & 1 & 5.36 & 5.36 & 21 & 0.26 & 0.00 \\
\hline topsmelt DNC & 0 & -- & -- & 17 & 0.00 & 0.00 \\
\hline black croaker \({ }^{\text {DNC }}\) & 0 & -- & -- & 10 & 0.00 & 0.00 \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there were no missing cases.

Table 21.c. Quantitative Measure of Fish Consumption of the Five DNC Fish by Hispanic or Latino Race.
\begin{tabular}{|lccc|ccc|}
\hline & & \begin{tabular}{c} 
Consumers \\
g/ind/day
\end{tabular} & \multicolumn{3}{c|}{ Those Who Catch (Q9, Q16) } \\
\hline Hispanic or Latino & \(\mathbf{n}\) & Mean & \(\mathbf{M d}\) & \(\mathbf{n}\) & Mean & \(\mathbf{M d}\) \\
\hline Fish Type & 19 & 9.87 & 5.36 & 105 & 1.79 & 0.00 \\
\hline barred sand bass DNC & 15 & 11.25 & 5.36 & 103 & 1.64 & 0.00 \\
barracuda DNC & 8 & 12.39 & 10.71 & 106 & 0.94 & 0.00 \\
white croaker DNC & 3 & 6.25 & 5.36 & 81 & 0.23 & 0.00 \\
topsmelt DNC & 2 & 8.04 & 8.04 & 37 & 0.43 & 0.00 \\
\hline black croaker DNC & & & & & & \\
\hline
\end{tabular}

NOTE. Md \(=\) Median (50\%), * 4 weeks, there were 7 missing cases.

Table 21.d. Quantitative Measure of Fish Consumption of the Five DNC Fish by American- Indian or AlaskaNative Race.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Consumption Rate*} \\
\hline American Indian or Alaska Native & \multicolumn{3}{|c|}{\begin{tabular}{l}
Consumers \\
g/ind/day
\end{tabular}} & \multicolumn{3}{|c|}{Those Who Catch (Q9, Q16) g/ind/day} \\
\hline Fish Type & n & Mean & Md & n & Mean & Md \\
\hline barred sand bass \({ }^{\text {dNC }}\) & 1 & 2.68 & 2.68 & 5 & 0.54 & 0.00 \\
\hline barracuda DNC & 1 & 2.68 & 2.68 & 4 & 0.67 & 0.00 \\
\hline white croaker \({ }^{\text {DNC }}\) & 0 & -- & -- & 3 & 0.00 & 0.00 \\
\hline topsmelt DNC & 0 & -- & -- & 4 & 0.00 & 0.00 \\
\hline black croaker \({ }^{\text {DNC }}\) & 0 & -- & -- & 2 & 0.00 & 0.00 \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there were no missing cases.

Table 21.e. Quantitative Measure of Fish Consumption of the Five DNC Fish by Asian Race.
\begin{tabular}{|lccc|ccc|}
\hline \multicolumn{7}{c|}{ Consumption Rate* } \\
\hline Asian & \multicolumn{4}{c|}{\begin{tabular}{c} 
Consumers \\
g/ind/day
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
Those Who Catch (Q9, Q16) \\
g/ind/day
\end{tabular}} \\
\hline Fish Type & \(\mathbf{n}\) & Mean & Md & \(\mathbf{n}\) & Mean & Md \\
\hline barred sand bass DNC & 9 & 11.61 & 5.36 & 61 & 1.71 & 0.00 \\
white croaker DNC & 7 & 6.89 & 5.36 & 61 & 0.79 & 0.00 \\
barracuda DNC & 6 & 15.18 & 5.36 & 55 & 1.66 & 0.00 \\
topsmelt DNC & 5 & 24.11 & 10.71 & 66 & 1.83 & 0.00 \\
black croaker DNC & 3 & 13.39 & 10.71 & 17 & 2.36 & 0.00 \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there were 4 missing cases.

Table 21.f. Quantitative Measure of Fish Consumption of the Five Fish of Interest by Pacific Islander Race.
Consumption Rate*
\begin{tabular}{|lccc|ccc|}
\hline Pacific Islander & \multicolumn{4}{c|}{\begin{tabular}{c} 
Consumers \\
g/ind/day
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
Those Who Catch (Q9, Q16) \\
g/ind/day
\end{tabular}} \\
\hline Fish Type & n & Mean & Md & n & Mean & Md \\
\hline white croaker DNC & 0 & -- & -- & 0 & -- & -- \\
barred sand bass DNC & 0 & -- & -- & 3 & 0.00 & 0.00 \\
topsmelt DNC & 0 & -- & -- & 1 & 0.00 & 0.00 \\
barracuda DNC & 0 & -- & -- & 2 & 0.00 & 0.00 \\
black croaker DNC & 0 & -- & -- & 0 & -- & -- \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there was 1 missing case.

Table 21.g. Quantitative Measure of Fish Consumption of the Five Fish of Interest by Mixed Race.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Consumption Rate*} \\
\hline Mixed Race & \multicolumn{3}{|c|}{Consumers g/ind/day} & \multicolumn{3}{|r|}{Those Who Catch (Q9, Q16) g/ind/day} \\
\hline Fish Type & n & Mean & Md & n & Mean & Md \\
\hline barred sand bass \({ }^{\text {DNC }}\) & 1 & 21.43 & 21.43 & 9 & 2.38 & 0.00 \\
\hline barracuda \({ }^{\text {DNC }}\) & 1 & 5.36 & 5.36 & 10 & 0.54 & 0.00 \\
\hline white croaker \({ }^{\text {DNC }}\) & 0 & -- & -- & 9 & 0.00 & 0.00 \\
\hline topsmelt DNC & 0 & -- & -- & 8 & 0.00 & 0.00 \\
\hline black croaker \({ }^{\text {DNC }}\) & 0 & -- & -- & 4 & 0.00 & 0.00 \\
\hline
\end{tabular}

NOTE. Md = Median (50\%), * 4 weeks, there was 1 missing case.

Table 22: Quantitative measure of fish consumption by mode ( \(\mathrm{N}=270\) \& \(\mathrm{N}=693\) ).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Consumption Rate (g/ind./day)} \\
\hline All Races/ Ethnicities & \multicolumn{5}{|c|}{Angler-Consumers*} & \multicolumn{5}{|c|}{Full Sample**} \\
\hline Mode & n & Mean & U.C.L. & Md & U.D. & n & Mean & U.C.L. & Md & U.D. \\
\hline Pier or Jetty & 102 & 19.22 & 24.11 & 10.71 & 61.07 & 338 & 5.80 & 7.59 & 0.00 & 16.07 \\
\hline Charter Boat & 82 & 16.69 & 21.85 & 10.71 & 32.14 & 189 & 7.24 & 9.79 & 0.00 & 21.43 \\
\hline Private Boat & 55 & 19.48 & 28.49 & 10.71 & 42.86 & 139 & 7.71 & 11.81 & 0.00 & 21.43 \\
\hline Beach/Intertidal Zone & 10 & 20.09 & 28.92 & 16.07 & 42.86 & 27 & 7.44 & 12.60 & 0.00 & 30.00 \\
\hline Total & 270 \({ }^{\text {a }}\) & 18.55 & 21.41 & 10.71 & 42.86 & 693 & 6.64 & 7.95 & 0.00 & 21.43 \\
\hline
\end{tabular}

NOTE. U.C.L. \(=\) Upper Confidence Limit ( \(95 \%\) ); Md \(=\) Median (50\%); U.D. = Upper Decile ( \(90 \%\) ); *4 weeks; \({ }^{\text {a }}\) there were 21 instances of missing data. \(N=270\) represents number of anglers; \(n\) represents number of times the fish species was reported to be consumed. Anglers were asked to report all that applied.

Table 23. Comparison across Seafood Consumption Studies 1994 vs 2014.
\begin{tabular}{|l|c|c|}
\hline Study & 1994 Study (SMBRP 1994) & 2014 Seafood Consumption Study \\
\hline Surveying days & 99 & 128 \\
Fishing sites & 29 & 61 \\
Anglers counted & 2376 & 1449 \\
Anglers approached & 1751 & 888 \\
Angler responses & 1243 & 693 \\
Response rate & \(71 \%\) & \(78 \%\) \\
\hline
\end{tabular}

Table 24: Comparison of Palos Verdes Shelf vs San Francisco consumption report.
\begin{tabular}{|l|ccr|rr|}
\hline \multicolumn{6}{c|}{ Consumption Rate (g/ind./day) } \\
\hline & Palos Verdes Shelf 2014 Study & San Francisco 2000 Study \\
\hline Ethnicity & \(\mathbf{n}\) & Mean & Median & Mean & Median \\
\hline Hispanic & 80 & 16.41 & 10.71 & 16.6 & 16.0 \\
Asian & 76 & 20.76 & 10.71 & 17.8 & 16.0 \\
White & 54 & 19.25 & 9.38 & 14.4 & 16.0 \\
Black & 17 & 23.00 & 16.07 & 19.4 & 16.0 \\
Other & 22 & 12.78 & 6.70 & - & - \\
\hline Total & \(270^{a}\) & 18.55 & 10.71 & 16.5 & 16.0 \\
\hline
\end{tabular}

Table 25: Advisory Awareness and Behavior Change by Ethnicity and Mode (N=425).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Fishing Mode} \\
\hline Ethnicity & & Pier or Jetty & Private boat & Party or Charter boat & Beach or Intertidal zone & Total \\
\hline \multirow{10}{*}{White} & Avoids some fish species & 2
\(6.7 \%\) & 7
\(15.9 \%\) & 3
\(10.7 \%\) & 0
\(0.0 \%\) & 12
\(11.3 \%\) \\
\hline & Reduced consumption & 1
\(3.3 \%\) & 2
\(4.5 \%\) & 1
\(3.6 \%\) & 250\% & 5
\(4.7 \%\) \\
\hline & Doesn't eat & 10 & 2 & 7 & 3 & 22 \\
\hline & fish & 33.3\% & 4.5\% & 25.0\% & 75.0\% & 20.8\% \\
\hline & Changed fishing & 0 & 1 & 0 & 0 & 1 \\
\hline & locations & 0.0\% & 2.3\% & 0.0\% & 0.0\% & .9\% \\
\hline & & 17 & 30 & 16 & 0 & 63 \\
\hline & No change & 56.7\% & 68.2\% & 57.1\% & 0.0\% & 59.4\% \\
\hline & More & 0 & 2 & 1 & 0 & 3 \\
\hline & cautious & 0.0\% & 4.5\% & 3.6\% & 0.0\% & 2.8\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Other} & & & & & \\
\hline & & 30 & 44 & 28 & 4 & 106 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{15}{*}{Black or African American} & Avoids some fish species & 12.5\% & 3 & 0
\(0.0 \%\) & 0
\(0.0 \%\) & \[
\begin{array}{r}
4 \\
19.0 \%
\end{array}
\] \\
\hline & Reduced & 0 & 0 & 0 & 1 & 1 \\
\hline & consumption & 0.0\% & 0.0\% & 0.0\% & 50.0\% & 4.8\% \\
\hline & Doesn't eat & 0 & 1 & 0 & 0 & 1 \\
\hline & fish & 0.0\% & 14.3\% & 0.0\% & 0.0\% & 4.8\% \\
\hline & Changed fishing & 1 & 0 & 2 & 1 & 4 \\
\hline & locations & 12.5\% & 0.0\% & 50.0\% & 50.0\% & 19.0\% \\
\hline & & 5 & 1 & 2 & 0 & 8 \\
\hline & No change & 62.5\% & 14.3\% & 50.0\% & 0.0\% & 38.1\% \\
\hline & More & 0 & 2 & 0 & 0 & 2 \\
\hline & cautious & 0.0\% & 28.6\% & 0.0\% & 0.0\% & 9.5\% \\
\hline & & 1 & 0 & 0 & 0 & 1 \\
\hline & Other & 12.5\% & 0.0\% & 0.0\% & 0.0\% & 4.8\% \\
\hline & & 8 & 7 & 4 & 2 & 21 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{15}{*}{Hispanic or Latino} & Avoids some fish species & 15
\(13.6 \%\) & 14.3\% & 25.0\% & 20.0\% & 24
\(15.7 \%\) \\
\hline & Reduced & 8 & 0 & 1 & 0 & 9 \\
\hline & consumption & 7.3\% & 0.0\% & 4.2\% & 0.0\% & 5.9\% \\
\hline & Doesn't eat & 33 & 3 & 8 & 2 & 46 \\
\hline & fish & 30.0\% & 21.4\% & 33.3\% & 40.0\% & 30.1\% \\
\hline & Changed fishing & 0 & 0 & 1 & 0 & 1 \\
\hline & locations & 0.0\% & 0.0\% & 4.2\% & 0.0\% & .7\% \\
\hline & & 43 & 9 & 8 & 2 & 62 \\
\hline & No change & 39.1\% & 64.3\% & 33.3\% & 40.0\% & 40.5\% \\
\hline & More & 3 & 0 & 0 & 0 & 3 \\
\hline & cautious & 2.7\% & 0.0\% & 0.0\% & 0.0\% & 2.0\% \\
\hline & & 8 & 0 & 0 & 0 & 8 \\
\hline & Other & 7.3\% & 0.0\% & 0.0\% & 0.0\% & 5.2\% \\
\hline & & 110 & 14 & 24 & 5 & 153 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow[b]{2}{*}{American Indian or Alaskan Native} & Avoids some fish species & & & & & \\
\hline & Reduced consumption & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Doesn't eat fish \\
Changed fishing locations
\end{tabular}} & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{4}} & \multirow{4}{*}{100.0\%} \\
\hline & & 1 & 1 & & & \\
\hline & No change & 100.0\% & 100.0\% & 100.0\% & & \\
\hline & More cautious & & & & & \\
\hline & Other & & & & & \\
\hline & & 1 & 1 & 4 & & 6 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline \multirow{14}{*}{Asian} & Avoids some fish species & 6
\(10.0 \%\) & 3
\(37.5 \%\) & 3.3\% & 3
\(75.0 \%\) & 13
\(12.7 \%\) \\
\hline & Reduced & 3 & 1 & 1 & 0 & 5 \\
\hline & consumption & 5.0\% & 12.5\% & 3.3\% & 0.0\% & 4.9\% \\
\hline & Doesn't eat & 14 & 3 & 3 & 0 & 20 \\
\hline & fish & 23.3\% & 37.5\% & 10.0\% & 0.0\% & 19.6\% \\
\hline & Changed fishing locations & & & & & \\
\hline & & 34 & 1 & 22 & 1 & 58 \\
\hline & No change & 56.7\% & 12.5\% & 73.3\% & 25.0\% & 56.9\% \\
\hline & More & 0 & 0 & 3 & 0 & 3 \\
\hline & cautious & 0.0\% & 0.0\% & 10.0\% & 0.0\% & 2.9\% \\
\hline & & 3 & 0 & 0 & 0 & 3 \\
\hline & Other & 5.0\% & 0.0\% & 0.0\% & 0.0\% & 2.9\% \\
\hline & & 60 & 8 & 30 & 4 & 102 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{9}{*}{Pacific Islander} & Avoids some fish species & 0
\(0.0 \%\) & 0
\(0.0 \%\) & 100.0\% & & 20.0\% \\
\hline & Reduced consumption & & & & & \\
\hline & Doesn't eat & 0 & 1 & 0 & & 1 \\
\hline & fish Changed fishing locations & 0.0\% & 50.0\% & 0.0\% & & 20.0\% \\
\hline & & 2 & 1 & 0 & & 3 \\
\hline & No change & 100.0\% & 50.0\% & 0.0\% & & 60.0\% \\
\hline & More cautious & & & & & \\
\hline & Other & & & & & \\
\hline & Total & 2 & 2 & 1 & & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline \multirow{10}{*}{Mixed Race} & Avoids some fish species & 0
\(0.0 \%\) & 0
\(0.0 \%\) & 1
33.3 & & 1
\(8.3 \%\) \\
\hline & Reduced consumption & & & & & \\
\hline & Doesn't eat & 1 & 1 & 1 & & 3 \\
\hline & fish Changed fishing locations & 25.0\% & 20.0\% & 33.3\% & & 25.0\% \\
\hline & & 3 & 4 & 1 & & 8 \\
\hline & No change & 75.0\% & 80.0\% & 33.3\% & & 66.7\% \\
\hline & More cautious & & & & & \\
\hline & \multirow[t]{2}{*}{Other} & & & & & \\
\hline & & 4 & 5 & 3 & & 12 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline & & 215 & 81 & 94 & 15 & 405 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

NOTE. There were 20 missing cases.

Table 25.a. Importance of Warnings by Ethnicity and Fishing Mode (N=420).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Fishing Mode} \\
\hline Ethnicity & & Pier or Jetty & Private boat & Party or Charter boat & Beach or Intertidal zone & Total \\
\hline & & 16 & 17 & 12 & 1 & 46 \\
\hline & important & 53.3\% & 37.8\% & 40.0\% & 25.0\% & 42.2\% \\
\hline & & 6 & 19 & 13 & 2 & 40 \\
\hline & Important & 20.0\% & 42.2\% & 43.3\% & 50.0\% & 36.7\% \\
\hline White & Somewhat & 5 & 8 & 4 & 0 & 17 \\
\hline & important & 16.7\% & 17.8\% & 13.3\% & 0.0\% & 15.6\% \\
\hline & Not & 3 & 1 & 1 & 1 & 6 \\
\hline & important & 10.0\% & 2.2\% & 3.3\% & 25.0\% & 5.5\% \\
\hline & & 30 & 45 & 30 & 4 & 109 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline & Very & 4 & 4 & 3 & 1 & 12 \\
\hline & important & 50.0\% & 57.1\% & 75.0\% & 50.0\% & 57.1\% \\
\hline Black or African American & & 2 & 0 & 1 & 0 & 3 \\
\hline & Important & 25.0\% & 0.0\% & 25.0\% & 0.0\% & 14.3\% \\
\hline & & 1 & 2 & 0 & 1 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Somewhat important & 12.5\% & 28.6\% & 0.0\% & 50.0\% & 19.0\% \\
\hline & Not & 1 & 1 & 0 & 0 & 2 \\
\hline & important & 12.5\% & 14.3\% & 0.0\% & 0.0\% & 9.5\% \\
\hline & & 8 & 7 & 4 & 2 & 21 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{10}{*}{Hispanic or Latino} & Very & 73 & 7 & 14 & 4 & 98 \\
\hline & important & 65.8\% & 50.0\% & 56.0\% & 80.0\% & 63.2\% \\
\hline & & 24 & 5 & 7 & 1 & 37 \\
\hline & Important & 21.6\% & 35.7\% & 28.0\% & 20.0\% & 23.9\% \\
\hline & Somewhat & 9 & 1 & 3 & 0 & 13 \\
\hline & important & 8.1\% & 7.1\% & 12.0\% & 0.0\% & 8.4\% \\
\hline & Not & 5 & 1 & 1 & 0 & 7 \\
\hline & important & 4.5\% & 7.1\% & 4.0\% & 0.0\% & 4.5\% \\
\hline & & 111 & 14 & 25 & 5 & 155 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{9}{*}{American Indian or Alaskan Native} & Very & 0 & 0 & 2 & & 2 \\
\hline & important & 0.0\% & 0.0\% & 50.0\% & & 33.3\% \\
\hline & & 1 & 1 & 1 & & 3 \\
\hline & Important & 100.0\% & 100.0\% & 25.0\% & & 50.0\% \\
\hline & Somewhat & 0 & 0 & 1 & & 1 \\
\hline & important & 0.0\% & 0.0\% & 25.0\% & & 16.7\% \\
\hline & Not important & & & & & \\
\hline & & 1 & 1 & 4 & & 6 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline \multirow{10}{*}{Asian} & Very & 22 & 3 & 12 & 1 & 38 \\
\hline & important & 37.3\% & 37.5\% & 40.0\% & 25.0\% & 37.6\% \\
\hline & & 25 & 5 & 15 & 2 & 47 \\
\hline & Important & 42.4\% & 62.5\% & 50.0\% & 50.0\% & 46.5\% \\
\hline & Somewhat & 2 & 0 & 3 & 1 & 6 \\
\hline & important & 3.4\% & 0.0\% & 10.0\% & 25.0\% & 5.9\% \\
\hline & Not & 10 & 0 & 0 & 0 & 10 \\
\hline & important & 16.9\% & 0.0\% & 0.0\% & 0.0\% & 9.9\% \\
\hline & & 59 & 8 & 30 & 4 & 101 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline \multirow{5}{*}{Pacific Islander} & Very & 0 & 2 & 1 & & 3 \\
\hline & important & 0.0\% & 100.0\% & 100.0\% & & 60.0\% \\
\hline & & 2 & 0 & 0 & & 2 \\
\hline & Important & 100.0\% & 0.0\% & 0.0\% & & 40.0\% \\
\hline & Somewhat important & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Not important & & & & & \\
\hline & & 2 & 2 & 1 & & 5 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline & Very & 2 & 1 & 2 & & 5 \\
\hline & important & 50.0\% & 20.0\% & 66.7\% & & 41.7\% \\
\hline & & 0 & 1 & 1 & & 2 \\
\hline & Important & 0.0\% & 20.0\% & 33.3\% & & 16.7\% \\
\hline Mixed Race & Somewhat & 1 & 3 & 0 & & 4 \\
\hline & important & 25.0\% & 60.0\% & 0.0\% & & 33.3\% \\
\hline & Not & 1 & 0 & 0 & & 1 \\
\hline & important & 25.0\% & 0.0\% & 0.0\% & & 8.3\% \\
\hline & & 4 & 5 & 3 & & 12 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & & 100.0\% \\
\hline & & 215 & 82 & 97 & 15 & 409 \\
\hline & Total & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

NOTE. There were 11 missing cases.
\begin{tabular}{|lcc|}
\hline Table 25.b. Importance of the warnings (N=425). & Frequency & Percentage \\
\hline & 210 & 50.0 \\
\hline Very important & 138 & 32.9 \\
Important & 45 & 10.6 \\
Somewhat important & 27 & 6.0 \\
Not important & 4 & .5 \\
\hline Don't know/refused & 424 & 100.0 \\
\hline Total & & \\
\hline
\end{tabular}

NOTE. There was 1 missing case.

Table 25.c. Percentage of anglers who had seen or heard any health advisory warnings.
\begin{tabular}{|lcc|}
\hline & Frequency & Percentage \\
\hline Yes & 425 & 61.3 \\
No & 264 & 38.1 \\
Don't know & 4 & .6 \\
\hline Total & 693 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|lcc|}
\hline Table 25.d Awareness of what the warning said (N=425). & & \\
\hline & Frequency & Percentage \\
\hline Fish are contaminated & 214 & 53.8 \\
Do not eat white croaker & 151 & 37.9 \\
Do not eat barred sand bass & 61 & 15.3 \\
Do not eat barracuda & 57 & 14.3 \\
Do not eat black croaker & 47 & 11.8 \\
Only eat small amounts & 39 & 9.8 \\
Do not eat topsmelt & 35 & 8.8 \\
Protect your health & 20 & 5.0 \\
Other & 12 & 3.0 \\
Don't know & 20 & 5.1 \\
\hline Total & 656 & 164.8 \\
\hline
\end{tabular}

NOTE. Respondents could choose more than one answer; therefore, percentage may sum to more than \(100 \%\)
\begin{tabular}{|c|c|c|}
\hline & Frequency & Percentage \\
\hline Signs on beach or pier & 320 & 75.7 \\
\hline Other fishermen or friends & 48 & 11.3 \\
\hline Brochures (including Department of Fish and Game) & 32 & 7.6 \\
\hline Television & 31 & 7.3 \\
\hline Online (including Department of Fish and Game) & 30 & 7.1 \\
\hline Newspaper or magazine & 24 & 5.7 \\
\hline Other & 7 & 1.7 \\
\hline Don't know & 5 & 1.2 \\
\hline Total & 497 & 117.5 \\
\hline
\end{tabular}

NOTE. Respondents could choose more than one answer; therefore, percentage may sum to more than \(100 \%\).
\begin{tabular}{|lcc|}
\hline Table 25.f. How anglers changed fishing or fish-eating habits (N=425). & \\
\hline & Frequency & Percentage \\
\hline No change & 212 & 50.8 \\
Doesn't eat fish & 96 & 23.0 \\
Avoids some fish species & 57 & 13.7 \\
Reduced consumption & 22 & 5.3 \\
More cautious & 11 & 2.6 \\
Changed fishing locations & 6 & 1.4 \\
\hline Other & 13 & 3.1 \\
\hline Total & 417 & 100.0 \\
\hline
\end{tabular}

NOTE. There were 8 missing cases.

\section*{APPENDIX N}

\section*{PHOTOS OF SURVEY ADMINISTRATORS IN THE FIELD}

\section*{Photos of Survey Administrators in the Field}


Surveyor Jasmine Yeh helping an angler with his catch.


Surveyor Lucia Phan with an angler from Redondo Sportsfishing.


Surveyor Citadel Casbag interviewing an angler at Pier The last day of surveying for the team. J.

\section*{APPENDIX O}

FISH ADVISORY

\section*{A guide to eating fish caught from Ventura Harbor to San Mateo Point}

Women 18-45, especially those who are pregnant or breastfeeding, and children 1-17


For example: If you eat 1 serving of Kelp bass, do not eat any more fish until the next week.
```

